The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generate diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model investigate the role of ETC integrity in diabetic kidney disease (DKD).
View Article and Find Full Text PDFA substantial body of evidence has established the contributions of both mitochondrial dynamics and lipid metabolism to the pathogenesis of diabetic kidney disease (DKD). However, the precise interplay between these two key metabolic regulators of DKD is not fully understood. Here, we uncover a link between mitochondrial dynamics and lipid metabolism by investigating the role of carbohydrate-response element-binding protein (ChREBP), a glucose-responsive transcription factor and a master regulator of lipogenesis, in kidney podocytes.
View Article and Find Full Text PDFThe mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generated diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model to investigate the role of ETC integrity in diabetic kidney disease (DKD).
View Article and Find Full Text PDFThe clinical indications for immune checkpoint inhibitors (ICIs) are rapidly expanding. However, adverse events affecting multiple organs, including kidneys leading to ICI-associated acute kidney injury (AKI), remain a significant challenge with ICI therapy. Although AKI is considered a rare complication, it can be severe and result in treatment interruption or discontinuation of ICIs.
View Article and Find Full Text PDFThe role and nature of mitochondrial dysfunction in diabetic kidney disease (DKD) has been extensively studied. Yet, the molecular drivers of mitochondrial remodeling in DKD are poorly understood. Diabetic kidney cells exhibit a cascade of mitochondrial dysfunction ranging from changes in mitochondrial morphology to significant alterations in mitochondrial biogenesis, biosynthetic, bioenergetics and production of reactive oxygen species (ROS).
View Article and Find Full Text PDFlncRNA taurine-upregulated gene 1 (Tug1) is a promising therapeutic target in the progression of diabetic nephropathy (DN), but the molecular basis of its protection remains poorly understood. Here, we generate a triple-mutant diabetic mouse model coupled with metabolomic profiling data to interrogate whether Tug1 interaction with peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) is required for mitochondrial remodeling and progression of DN in vivo. We find that, compared with diabetic conditional deletion of Pgc1α in podocytes alone (db/db; Pgc1α), diabetic Pgc1α knockout combined with podocyte-specific Tug1 overexpression (db/db; Tug; Pgc1α) reverses the protective phenotype of Tug1 overexpression, suggesting that PGC1α is required for the renoprotective effect of Tug1.
View Article and Find Full Text PDFMitochondrial medicine has experienced significant progress in recent years and is expected to grow significantly in the near future, yielding many opportunities to translate novel bench discoveries into clinical medicine. Multiple lines of evidence have linked mitochondrial dysfunction to a variety of metabolic diseases, including diabetic nephropathy (DN). Mitochondrial dysfunction presumably precedes the emergence of key histologic and biochemical features of DN, which provides the rationale to explore mitochondrial fitness as a novel therapeutic target in patients with DN.
View Article and Find Full Text PDFRecent advances in large-scale RNA sequencing and genome-wide profiling projects have unraveled a heterogeneous group of RNAs, collectively known as long noncoding RNAs (lncRNAs), which play central roles in many diverse biological processes. Importantly, an association between aberrant expression of lncRNAs and diverse human pathologies has been reported, including in a variety of kidney diseases. These observations have raised the possibility that lncRNAs may represent unexploited potential therapeutic targets for kidney diseases.
View Article and Find Full Text PDFThe bidirectional relationship between cancer and chronic kidney disease (CKD) is complex. Patients with cancer, particularly those with hematological malignancies such as multiple myeloma and lymphoma, are at increased risk of developing acute kidney injury and CKD. On the other hand, emerging evidence from large observational registry analyses have consistently shown that cancer risk is increased by at least 2- to 3-fold in kidney transplant recipients, and the observed increased risk occurs not only in those who have received kidney transplants but also in those on dialysis and with mild- to moderate-stage CKD.
View Article and Find Full Text PDFThe association between kidney disease and cancer is multifaceted and complex. Persons with chronic kidney disease (CKD) have an increased incidence of cancer, and both cancer and cancer treatments can cause impaired kidney function. Renal issues in the setting of malignancy can worsen patient outcomes and diminish the adequacy of anticancer treatments.
View Article and Find Full Text PDFLong noncoding RNAs (lncRNAs) have been shown to play key roles in a variety of biological activities of the cell. However, less is known about how lncRNAs respond to environmental cues and what transcriptional mechanisms regulate their expression. Studies from our laboratory have shown that the lncRNA Tug1 (taurine upregulated gene 1) is crucial for the progression of diabetic kidney disease, a major microvascular complication of diabetes.
View Article and Find Full Text PDFOnco-nephrology is an emerging field in medicine. Patients with cancer may suffer from kidney diseases because of the cancer itself and cancer-related therapy. It is critical for nephrologists to be knowledgeable of cancer biology and therapy in order to be fully integrated in the multidisciplinary team and optimally manage patients with cancer and kidney diseases.
View Article and Find Full Text PDFOne-carbon metabolism plays a central role in a broad array of metabolic processes required for the survival and growth of tumor cells. However, the molecular basis of how one-carbon metabolism may influence RNA methylation and tumorigenesis remains largely unknown. Here we show MTHFD2, a mitochondrial enzyme involved in one-carbon metabolism, contributes to the progression of renal cell carcinoma (RCC) via a novel epitranscriptomic mechanism that involves HIF-2α.
View Article and Find Full Text PDFPhosphorylation of Dynamin-related protein1 (Drp1) represents an important regulatory mechanism for mitochondrial fission. Here we established the role of Drp1 Serine 600 (S600) phosphorylation on mitochondrial fission in vivo, and assessed the functional consequences of targeted elimination of the Drp1S600 phosphorylation site in progression of diabetic nephropathy (DN). We generated a knockin mouse in which S600 was mutated to alanine (Drp1S600A).
View Article and Find Full Text PDFEpithelial-mesenchymal transition (EMT) contributes significantly to interstitial matrix deposition in diabetic kidney disease (DKD). However, detection of EMT in kidney tissue is impracticable, and anti-EMT therapies have long been hindered. We reported that phosphatase and tensin homolog (PTEN) promoted transforming growth factor beta 1 (TGF-β), sonic hedgehog (SHH), connective tissue growth factor (CTGF), interleukin 6 (IL-6), and hyperglycemia-induced EMT when PTEN was modified by a MEX3C-catalyzed K27-linked polyubiquitination at lysine 80 (referred to as PTENK27-polyUb).
View Article and Find Full Text PDFRecent advances have led to a greater appreciation of how mitochondrial dysfunction contributes to diverse acute and chronic pathologies. Indeed, mitochondria have received increasing attention as a therapeutic target in a variety of diseases because they serve as key regulatory hubs uniquely situated at crossroads between multiple cellular processes. This review provides an overview of the role of mitochondrial dysfunction in chronic kidney disease, with special emphasis on its role in the development of diabetic nephropathy.
View Article and Find Full Text PDFWhile increased mitochondrial reactive oxygen species have been commonly implicated in a variety of disease states, their in vivo role in the pathogenesis of diabetic nephropathy remains controversial. Using a two-photon imaging approach with a genetically encoded redox biosensor, we monitored mitochondrial redox state in the kidneys of experimental models of diabetes in real-time in vivo. Diabetic (db/db) mice that express a redox-sensitive Green Fluorescent Protein biosensor (roGFP) specifically in the mitochondrial matrix (db/dbmt-roGFP) were generated, allowing dynamic monitoring of redox changes in the kidneys.
View Article and Find Full Text PDFThe cross talk between the immune and nervous systems is critical not only for maintaining normal homeostasis but also for the progression of a variety of inflammatory diseases. Macrophage activation and β-adrenergic receptors are known to play important roles in facilitating this communication between these 2 systems. Using an integrated in vitro and in vivo study, Noh et al.
View Article and Find Full Text PDF