Research on the correlation between metal levels in blood and Covid-19 infection has been conducted primarily by assessing how each individual blood metal is linked to different aspects of the disease using samples from donors with various levels of severity to Covid-19 infection. Using logistics regression on LIBS spectra of plasma samples collected pre- and post- Covid-19 pandemic from donors known to have developed various levels of antibodies to the SARS-Cov-2 virus, we show that relying on the levels of Na, K, and Mg together is more efficient at differentiating the two types of plasma samples than any single blood alone.
View Article and Find Full Text PDFMachine learning techniques were used to predict tensile properties of material extrusion-based additively manufactured parts made with Technomelt PA 6910, a hot melt adhesive. An adaptive data generation technique, specifically an active learning process based on the Gaussian process regression algorithm, was employed to enable prediction with limited training data. After three rounds of data collection, machine learning models based on linear regression, ridge regression, Gaussian process regression, and K-nearest neighbors were tasked with predicting properties for the test dataset, which consisted of parts fabricated with five processing parameters chosen using a random number generator.
View Article and Find Full Text PDF