Despite the high importance of coagulation process in drinking water treatment plant (DWTP), challenge remains in effectively linking raw water quality measured at the inlet of the DWTP with coagulant dosage rate. This study proposes an integral modelling framework using hybrid extreme learning machine and Bat metaheuristic algorithm (ELM-Bat) for modelling coagulant dosage rate using water temperature, pH, specific conductance, dissolved oxygen, and water turbidity. The aluminum sulphate (Al (SO).
View Article and Find Full Text PDFIn the present study, three machine learning methods were applied for predicting seepage flow through embankment dams, namely (i) support vector regression (SVR), relevance vector machine (RVM), and Gaussian process regression (GPR). The three models were developed using seepage flow (Q: L/mn) and piezometer level (Z:m) measured at several piezometers placed in the corps body of the dam. The proposed models were calibrated and validated using a separate subset.
View Article and Find Full Text PDF