Horizontal disparity has been recognized as the primary signal driving stereoscopic depth since the invention of the stereoscope in the 1830s. It has a unique status in our understanding of binocular vision. The direction of offset of the eyes gives the disparities of corresponding image point locations across the two retinas a strong horizontal bias.
View Article and Find Full Text PDFLogic and common sense say that judging two stimuli as "same" is the converse of judging them as "different". Empirically, however, 'Same'-'Different' judgment data are anomalous in two major ways. The fast-'Same' effect violates the expectation that 'Same' reaction time (RT) should be predictable by extrapolating from 'Different' RT.
View Article and Find Full Text PDFThe stereo correspondence problem exists because false matches between the images from multiple sensors camouflage the true (veridical) matches. True matches are correspondences between image points that have the same generative source; false matches are correspondences between similar image points that have different sources. This problem of selecting true matches among false ones must be overcome by both biological and artificial stereo systems in order for them to be useful depth sensors.
View Article and Find Full Text PDFStereoscopic depth is most useful when it comes from relative rather than absolute disparities. However, the depth perceived from relative disparities can vary with stimulus parameters that have no connection with depth or are irrelevant to the task. We investigated observers' ability to judge the stereo depth of task-relevant stimuli while ignoring irrelevant stimuli.
View Article and Find Full Text PDFThe separation between the eyes shapes the distribution of binocular disparities and gives a special role to horizontal disparities. However, for one-dimensional stimuli, disparity direction, like motion direction, is linked to stimulus orientation. This makes the perceived depth of one-dimensional stimuli orientation dependent and generally non-veridical.
View Article and Find Full Text PDFHorizontal binocular disparity has long been the conventional predictor of stereo depth. Surprisingly, an alternative predictor fairs just as well. This alternative predicts the relative depth of two stimuli from the relation between their disparity vectors, without regard to horizontal disparities.
View Article and Find Full Text PDFIt is often assumed that the space we perceive is Euclidean, although this idea has been challenged by many authors. Here we show that, if spatial cues are combined as described by Maximum Likelihood Estimation, Bayesian, or equivalent models, as appears to be the case, then Euclidean geometry cannot describe our perceptual experience. Rather, our perceptual spatial structure would be better described as belonging to an arbitrarily curved Riemannian space.
View Article and Find Full Text PDFHumans can recover 3-D structure from the projected 2D motion field of a rotating object, a phenomenon called structure from motion (SFM). Current models of SFM perception are limited to the case in which objects rotate about a frontoparallel axis. However, as our recent psychophysical studies showed, frontoparallel axes of rotation are not representative of the general case.
View Article and Find Full Text PDFEven though binocular disparity is a very well-studied cue to depth, the function relating disparity and perceived depth has been characterized only for the case of horizontal disparities. We sought to determine the general relationship between disparity and depth for a particular set of stimuli. The horizontal disparity direction is a special case, albeit an especially important one.
View Article and Find Full Text PDFBinocular disparities have a straightforward geometric relation to object depth, but the computation that humans use to turn disparity signals into depth percepts is neither straightforward nor well understood. One seemingly solid result, which came out of Wheatstone's work in the 1830s, is that the sign and magnitude of horizontal disparity predict the perceived depth of an object: 'positive' horizontal disparities yield the perception of 'far' depth, 'negative' horizontal disparities yield the perception of 'near' depth, and variations in the magnitude of horizontal disparity monotonically increase or decrease the perceived extent of depth. Here we show that this classic link between horizontal disparity and the perception of 'near' versus 'far' breaks down when the stimuli are one-dimensional.
View Article and Find Full Text PDFNeurocomputing (Amst)
March 2008
We introduce a model for the computation of structure-from-motion based on the physiology of visual cortical areas MT and MST. The model assumes that the perception of depth from motion is related to the firing of a subset of MT neurons tuned to both velocity and disparity. The model's MT neurons are connected to each other laterally to form modulatory receptive-field surrounds that are gated by feedback connections from area MST.
View Article and Find Full Text PDFHumans can recover the structure of a 3D object from motion cues alone. Recovery of structure from motion (SFM) from the projected 2D motion field of a rotating object has been studied almost exclusively in one particular condition, that in which the axis of rotation lies in the frontoparallel plane. Here, we assess the ability of humans to recover SFM in the general case, where the axis of rotation may be slanted out of the frontoparallel plane.
View Article and Find Full Text PDFThe left and right eyes receive subtly different images from a visual scene. Binocular disparities of retinal image locations are correlated with variation in the depth of objects in the scene and make stereoscopic depth perception possible. Disparity stereoscopically specifies a stimulus; changing the stimulus in a way that conserves its disparity leaves the stimulus stereoscopically unchanged.
View Article and Find Full Text PDFWhen we look at Anderson's Fig. 1a, or at just about anything else, we see surfaces and boundaries, contours and intersections, edges and angles. These complex, interpreted image features might well be the stimulus elements that stereo mechanisms analyse to recover depth.
View Article and Find Full Text PDFSeeking to understand how people recognize objects, we have examined how they identify letters. We expected this 26-way classification of familiar forms to challenge the popular notion of independent feature detection ("probability summation"), but find instead that this theory parsimoniously accounts for our results. We measured the contrast required for identification of a letter briefly presented in visual noise.
View Article and Find Full Text PDFStereoacuity thresholds, measured with bar targets, rise as the absolute disparity of the bars is increased. One explanation for this rise is that, as the bars are moved away from the fixation plane, the stereo system uses coarser mechanisms to encode the bars' disparity; coarse mechanisms are insensitive to small changes in target disparity, resulting in higher thresholds. To test this explanation, we measured stereoacuity with a 6 degrees wide 3 cpd grating presented in a rectangular envelope.
View Article and Find Full Text PDFThere are two possible binocular mechanisms for the detection of motion in depth. One is based on disparity changes over time and the other is based on interocular velocity differences. It has previously been shown that disparity changes over time can produce the perception of motion in depth.
View Article and Find Full Text PDFA spatially flat stimulus is perceived as varying in depth if its velocity structure is consistent with that of a three-dimensional (3D) object. This is structure from motion (SFM). We asked if the converse effect also exists.
View Article and Find Full Text PDFAn object moving in depth produces retinal images that change in position over time by different amounts in the two eyes. This allows stereoscopic perception of motion in depth to be based on either one or both of two different visual signals: inter-ocular velocity differences, and binocular disparity change over time. Disparity change over time can produce the perception of motion in depth.
View Article and Find Full Text PDFStud Health Technol Inform
March 2005
The focus of this paper is on the development of a wearable electronic network that provides data and power transport. A materials and manufacturing survey was conducted to determine the best performing and most durable materials to withstand the rigors of textile manufacturing and potential military use. Narrow woven technology was selected as the most appropriate manufacturing method.
View Article and Find Full Text PDFVariants of a lightness effect described by [Todorovic's, D. (1997). Lightness and junctions.
View Article and Find Full Text PDFHuman stereo vision can resolve remarkably small depth differences between two stimuli, but the smallest resolvable difference is usually that between stimuli located near the plane of fixation. As distance from this plane increases, so does the smallest detectable increment in disparity. We examined this loss of resolution by comparing disparity discrimination thresholds for single-scale and multi-scale stimuli as a function of the pedestal disparity.
View Article and Find Full Text PDFStereo matching of a textured surface is, in principle, ambiguous because of the quasi-repetitive nature of texture. Here, we used a perfectly repetitive texture, namely a sinusoidal grating, to examine human stereo matching for repetitive patterns. Observers matched the depth of a vertical grating segment, 6-deg wide and presented in a rectangular envelope at or near the disparity of the segment edges.
View Article and Find Full Text PDFGratings with different disparities are sometimes seen as transparent surfaces, each with a distinct depth, when they are superimposed, and sometimes they are seen as a coherent plaid confined to a single depth plane--stereo analogs of transparent and coherent motion. Briefly presented sinusoidal gratings of similar spatial frequencies are seen to cohere in depth. The resulting plaid generally appears in a depth plane different from that of either component grating viewed separately; the plaid may even appear on the oppose side of fixation from the component gratings.
View Article and Find Full Text PDF