Addressing water scarcity challenges in arid regions is a pressing concern and demands innovative solutions for accurate groundwater potential mapping (GPM). This study presents a comprehensive evaluation of advanced modeling techniques to enhance the precision of GPM. This study, conducted in the Zayandeh Rood watershed, Iran, employed a spatial database comprising 16 influential factors on groundwater potential and data from 175 wells.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2021
The reduction of population concentration in some urban land uses is one way to prevent and reduce the spread of COVID-19 disease. Therefore, the objective of this study is to prepare the risk mapping of COVID-19 in Tehran, Iran, using machine learning algorithms according to socio-economic criteria of land use. Initially, a spatial database was created using 2282 locations of patients with COVID-19 from 2 February 2020 to 21 March 2020 and eight socio-economic land uses affecting the disease-public transport stations, supermarkets, banks, automated teller machines (ATMs), bakeries, pharmacies, fuel stations, and hospitals.
View Article and Find Full Text PDF