Purpose: Spermatogonial stem cells are affected by the interactions of extrinsic signals produced by components of the microenvironment niche, in addition to the chemical and physical properties of the extracellular matrix. Therefore, this study was initiated to assess the interaction of these cells on a synthetic nanofibrillar extracellular matrix that mimicked the geometry and nanotopography of the basement membrane for cellular growth.
Methods: This study has used a variety of experimental approaches to investigate the interaction of mouse neonatal-derived spermatogonial stem-like cells on a synthetic random oriented three-dimensional nanofibrillar matrix composed of electrospun polyamide nanofibers (Ultra-Web™).
Background: This study compared neonatal and adult mice-derived Sertoli cells (NSCs and ASCs) to examine the influence of feeder cells derived from donors of different ages on the maintenance of mouse spermatogonial stem cells (SSCs) in vitro.
Materials And Methods: SSCs were derived from the testes of six-day-old mice. They were subsequently transferred to Sertoli cells which were isolated by datura stramonium agglutinin (DSA) lectin from neonatal and adult mice for five days.