Publications by authors named "Faralli S"

In recent years, SenticNet and OntoSenticNet have represented important developments in the novel interdisciplinary field of research known as sentic computing, enabling the development of a variety of Sentic applications. In this paper, we propose an extension of the OntoSenticNet ontology, named DomainSenticNet, and contribute an unsupervised methodology to support the development of domain-aware Sentic applications. We developed an unsupervised methodology that, for each concept in OntoSenticNet, mines semantically related concepts from WordNet and Probase knowledge bases and computes domain distributional information from the entire collection of Kickstarter domain-specific crowdfunding campaigns.

View Article and Find Full Text PDF

We demonstrate a Distributed Acoustic Sensor (DAS) based on Ultra-Weak Fiber Bragg Gratings (UWFBGs) using a scalable homodyne demodulation in direct detection. We show that a distributed interferometric system using delay and mixing of backscattering from consecutive identical gratings can be combined with a Phase-Generated Carrier Differentiate and Cross-Multiply (PGC-DCM) demodulation algorithm to perform dynamic measurements with high SNR, employing a simple narrowband laser and a pin photodiode. The proposed homodyne demodulation technique is suitable for real-time monitoring using distributed measurements, as it does not require computationally costly phase unwrapping common in conventional schemes and is robust against detrimental harmonic distortions, while not requiring additional mechanisms to handle division-by-zero operations.

View Article and Find Full Text PDF

Iron deficiency represents a widespread problem for a large part of the population, especially for women, and has received increasing attention in food/supplement research. The contraindications of the iron supplements commercially available (e.g.

View Article and Find Full Text PDF

A packaged photonic integrated network-on-chip (NoC) based on multi-microrings with a controller and scheduler implemented in FPGA is demonstrated under dynamic packet-switched traffic. Multiple transmission scenarios have been investigated, comprising up to three interfering signals at the same wavelength. The dynamic switching exhibits a power penalty of approximately 0.

View Article and Find Full Text PDF

Pasta with eggs added (generally termed "special pasta" for Italian legislation) is made by adding no less than 4 eggs without shells (or no less than 200 g of liquid or lyophilized egg product) per kilogram of semolina, as provided by law. In this work, to determine the final content of eggs added to dough, an analytical procedure was developed for the rapid analysis of the cholesterol content in the finished pastas. The proposed procedure was simpler, faster, and more accurate than that of official methods of analysis based on the gravimetric determination of sterols.

View Article and Find Full Text PDF

We propose and experimentally demonstrate a stable homodyne phase demodulation technique in a ϕ-OTDR using a double-pulse probe and a simple direct detection receiver. The technique uses selective phase modulation of one of a pair of pulses to generate a carrier for dynamic phase changes and involves an enhanced phase demodulation scheme suitable for distributed sensing by being robust against light intensity fluctuations, independent of the modulation depth, and convenient for analogue signal processing. The capability of the technique to quantify distributed dynamic phase change due to a generic external impact is experimentally demonstrated by measuring the phase change induced by a nonlinear actuator generating a 2 kHz perturbation at a distance of 1.

View Article and Find Full Text PDF

A 24-port packaged multi-microring optical network-on-chip has been tested for simultaneous co- and counter-propagating transmissions at the same wavelength at 10 Gbps. In the co-propagating scenario communications up to five hops with one interfering signal have been tested, together with transmissions impaired by up to three interfering signals. In the counter-propagating scenario the device performance has been investigated exploiting the ring resonators in both shared-source and shared-destination configurations.

View Article and Find Full Text PDF

We demonstrate a hybrid distributed acoustic and temperature sensor (DATS) using a commercial off-the-shelf (COTS) distributed feedback (DFB) laser, a single-mode optical fiber, and a common receiver block. We show that the spectral and frequency noise characteristics of the laser, combined with a suitable modulation scheme, ensure the inter-pulse incoherence and intra-pulse coherence conditions required for exploiting the fast denoising benefits of cyclic Simplex pulse coding in the hybrid measurement. The proposed technique enables simultaneous, distributed measurement of vibrations and temperature, with key industrial applications in structural health monitoring and industrial process control systems.

View Article and Find Full Text PDF

We report on a novel near infrared SiGe phototransistor fabricated by a standard silicon photonics foundry. The device is first investigated by simulations. The fabricated devices are characterized in terms of current-voltage characteristics at different optical power.

View Article and Find Full Text PDF

The operation of an integrated silicon-photonics multi-microring network-on-chip (NoC) is experimentally demonstrated in terms of transmission spectra and bit error rates at 10 Gb/s. The integrated NoC consists of 8 thermally tuned microrings coupled to a central ring. The switching functionalities are tested with concurrent transmissions at both the same and different wavelengths.

View Article and Find Full Text PDF

Distributed Raman amplification (DRA) is widely exploited for the transmission of broadband, modulated signals used in data links, but not yet in coherent optical links for frequency metrology, where the requirements are rather different. After preliminary tests on fiber spools, in this paper we deeper investigate Raman amplification on deployed in-field optical metrological links. We actually test a Doppler-stabilized optical link both on a 94 km-long metro-network implementation with multiplexed ITU data channels and on a 180 km-long dedicated fiber haul connecting two cities, where DRA is employed in combination with Erbium-doped fiber amplification (EDFA).

View Article and Find Full Text PDF

An integrated noncoherent silicon receiver for demodulation of 100-Gb/s polarization-division multiplexed differential quadrature phase-shift keying and polarization-division multiplexed differential binary phase-shift keying signals is demonstrated. The receiver consists of a 2D surface grating coupler, four Mach-Zehnder delay interferometers and four germanium balanced photodetectors.

View Article and Find Full Text PDF

This paper presents a novel Indium Phosphide based photonic integrated circuit (PIC) for all-optical regeneration of both nonreturn-to-zero (NRZ) and return-to-zero (RZ) on-off-keying (OOK) signals. The PIC exploits cross gain compression in two semiconductor optical amplifiers to simultaneously obtain a wavelength-preserved and reshaped copy, and a wavelength-converted yet inverted copy of the input signal. Regeneration of 10 Gb/s signals on multiple wavelengths is demonstrated, showing a Q-factor improvement from 1.

View Article and Find Full Text PDF

We propose and experimentally demonstrate the use of cyclic pulse coding to improve the performance of hybrid Raman/fiber Bragg grating (FBG) fiber-optic sensors, for simultaneous measurement of distributed static temperature and discrete dynamic strain over the same sensing fiber. Effective noise reduction is achieved in both Raman optical time-domain reflectometry and dynamic interrogation of time-division-multiplexed fiber FBG sensors, enhancing the sensing range resolution and providing real-time point dynamic strain measurement capabilities. The highly integrated sensor scheme employs broadband apodized low-reflectivity FBGs, a single narrowband optical source, and a shared receiver block.

View Article and Find Full Text PDF

We propose and experimentally demonstrate a hybrid fiber optic sensing technique that effectively combines Raman optical time domain reflectometry and in-line time-division-multiplexing for fiber Bragg grating (FBG) dynamic interrogation. The highly integrated proposed scheme employs broadband apodized low reflectivity FBGs with a single narrowband optical source and a shared receiver block, allowing for simultaneous measurements of distributed static temperature and discrete dynamic strain, over the same sensing fiber.

View Article and Find Full Text PDF

A monolithic 25 Gbaud DQPSK receiver based on delay interferometers and balanced detection has been designed and fabricated on the hybrid Si/InGaAs platform. The integrated 30 µm long InGaAs p-i-n photodetectors have a responsivity of 0.64 A/W at 1550 nm and a 3dB bandwidth higher than 25 GHz.

View Article and Find Full Text PDF

A multimode pumping scheme for Er(3+)/Yb(3+) co-doped waveguide amplifiers based on broad area lasers at around 980 nm is presented. The proposed amplifier is fabricated by ion-exchange (IE) technique on silicate and phosphate glasses. The highly efficient energy transfer from Yb(3+) to Er(3+) ions, combined with the use of low cost and high power broad area laser, allows the realization of high performance and cost-effective integrated amplifiers.

View Article and Find Full Text PDF

We present an efficient multimode longitudinal pumping scheme which overcomes the main limitations of single-mode longitudinal pumping as well as top pumping in Si-nanoclusters sensitized Erbium-doped waveguide amplifiers. The proposed configuration is based on evanescent pump light coupling from a multimode waveguide to a Si-nanoclusters sensitized Er(3+)-doped active core. Theoretical predictions, based on propagation and population-rate equations for the coupled Er(3+)/Sinanoclusters system, point out that the proposed pumping scheme can provide high pump intensity within the active core, also ensuring good uniformity of the population inversion along the waveguide amplifier.

View Article and Find Full Text PDF