Publications by authors named "Farahdokht Nourisanami"

Article Synopsis
  • - MICAL proteins are essential for controlling actin filaments in cells, affecting important processes such as cell shape, division, and nerve growth, but their activity needs careful regulation to avoid harmful changes in cell structure.
  • - Previous research hinted that MICAL proteins are kept inactive (autoinhibited) and need specific proteins (Rab proteins) to activate, but the exact details weren't clear until now.
  • - The study unveils the structure of MICAL1, revealing how its activation relies on internal interactions within the protein and connections with other protein domains, highlighting a similar mechanism across different MICAL proteins.
View Article and Find Full Text PDF

The precise assembly of a functional nervous system relies on axon guidance cues. Beyond engaging their cognate receptors and initiating signaling cascades that modulate cytoskeletal dynamics, guidance cues also bind components of the extracellular matrix, notably proteoglycans, yet the role and mechanisms of these interactions remain poorly understood. We found that secreted semaphorins bind specifically to glycosaminoglycan (GAG) chains of proteoglycans, showing a preference based on the degree of sulfation.

View Article and Find Full Text PDF

The significance of long non-coding RNAs (lncRNAs) in the development and progression of human cancers has attracted increasing attention in recent years of investigations. Having versatile interactions and diverse functions, lncRNAs can act as oncogenes or tumor-suppressors to actively regulate cell proliferation, survival, stemness, drug resistance, invasion and metastasis. LINC00467, an oncogenic member of long intergenic non-coding RNAs, is upregulated in numerous malignancies and its high expression is often related to poor clinicopathological features.

View Article and Find Full Text PDF

Bioethanol produced from lignocellulosic biomass is regarded as a clean and sustainable energy source. The recalcitrant structure of lignocellulose is a major drawback to affordable bioethanol production from plant biomass. In this study, a novel endo-1,4-xylanase, named Xyn-2, from the camel rumen metagenome, was characterized and evaluated for hydrolysis of agricultural wastes.

View Article and Find Full Text PDF