Networks of spatially distributed radiofrequency identification sensors could be used to collect data in wearable or implantable biomedical applications. However, the development of scalable networks remains challenging. Here we report a wireless radiofrequency network approach that can capture sparse event-driven data from large populations of spatially distributed autonomous microsensors.
View Article and Find Full Text PDFMicromachines (Basel)
October 2020
Implantable active electronic microchips are being developed as multinode in-body sensors and actuators. There is a need to develop high throughput microfabrication techniques applicable to complementary metal-oxide-semiconductor (CMOS)-based silicon electronics in order to process bare dies from a foundry to physiologically compatible implant ensembles. Post-processing of a miniature CMOS chip by usual methods is challenging as the typically sub-mm size small dies are hard to handle and not readily compatible with the standard microfabrication, e.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Scalability of implantable neural interface devices is a critical bottleneck in enhancing the performance of cortical Brain-Computer Interfaces (BCIs) through access to high density and multi-areal cortical signals. This is challenging to achieve through current monolithic constructs with 100-200 channels, often with bulky tethering and packaging, and a spatially distributed sensor approach has recently been explored by a few groups, including our laboratories [1]. In this paper, we describe a microscale (500 μm) programmable neural stimulator in the context of an epicortical wireless networked system of sub-mm "Neurograins" with wireless energy harvesting (near 1 GHz) and bidirectional telemetry.
View Article and Find Full Text PDFThe technological ability to capture electrophysiological activity of populations of cortical neurons through chronic implantable devices has led to significant advancements in the field of brain-computer interfaces. Recent progress in the field has been driven by developments in integrated microelectronics, wireless communications, materials science, and computational neuroscience. Here, we review major device development landmarks in the arena of neural interfaces from FDA-approved clinical systems to prototype head-mounted and fully implantable wireless systems for multi-channel neural recording.
View Article and Find Full Text PDFProc IEEE Inst Electr Electron Eng
January 2010
Acquiring neural signals at high spatial and temporal resolution directly from brain microcircuits and decoding their activity to interpret commands and/or prior planning activity, such as motion of an arm or a leg, is a prime goal of modern neurotechnology. Its practical aims include assistive devices for subjects whose normal neural information pathways are not functioning due to physical damage or disease. On the fundamental side, researchers are striving to decipher the code of multiple neural microcircuits which collectively make up nature's amazing computing machine, the brain.
View Article and Find Full Text PDFTargeted neural excitation coupled with simultaneous multineuron recording is desirable both for studying the real-time dynamics of neural circuits and for prospective clinical treatment of neurological diseases. Optical stimulation of genetically targeted neurons expressing the light sensitive channel protein Channelrhodopsin (ChR2) has recently been reported as a means for millisecond temporal control of neuronal spiking activity with cell-type selectivity. This offers the prospect of enabling local (cellular level) stimulation and the concomitant monitoring of neural activity by extracellular electrophysiological methods, both in the vicinity of and distant to the stimulation site.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
A multitude of neuroengineering challenges exist today in creating practical, chronic multichannel neural recording systems for primate research and human clinical application. Specifically, a) the persistent wired connections limit patient mobility from the recording system, b) the transfer of high bandwidth signals to external (even distant) electronics normally forces premature data reduction, and c) the chronic susceptibility to infection due to the percutaneous nature of the implants all severely hinder the success of neural prosthetic systems. Here we detail one approach to overcome these limitations: an entirely implantable, wirelessly communicating, integrated neural recording microsystem, dubbed the Brain Implantable Chip (BIC).
View Article and Find Full Text PDFNeural stimulation with high spatial and temporal precision is desirable both for studying the real-time dynamics of neural networks and for prospective clinical treatment of neurological diseases. Optical stimulation of genetically targeted neurons expressing the light sensitive channel protein Channelrhodopsin (ChR2) has recently been reported as a means for millisecond temporal control of neuronal spiking activities with cell-type selectivity. This offers the prospect of enabling local delivery of optical stimulation and the simultaneous monitoring of the neural activity by electrophysiological means, both in the vicinity of and distant to the stimulation site.
View Article and Find Full Text PDFMacrophages that are recruited to the site of implanted biomaterials undergo fusion to form surface-damaging foreign body giant cells. Exposure of peripheral blood monocytes to interleukin-4 can recapitulate the fusion process in vitro. In this study, we used interleukin-4 to induce multinucleation of murine bone marrow-derived macrophages and observed changes in cell shape, including elongation and lamellipodia formation, before fusion.
View Article and Find Full Text PDF