This paper is about the effects of reactive oxygen species (ROS) - and of their nanoparticle-mediated extracellular removal - in the TGF-β1-induced differentiation of fibroblasts (human dermal fibroblasts - HDFa) to more contractile myofibroblasts, and in the maintenance of this phenotype. Here, poly(propylene sulfide) (PPS) nanoparticles have been employed on 2D and 3D in vitro models, showing extremely low toxicity and undergoing negligible internalization, thereby ensuring an extracellular-only action. Firstly, PPS nanoparticles abrogated ROS-mediated downstream molecular events such as glutathione oxidation, NF-κB activation, and heme oxidase-1 (HMOX) overexpression.
View Article and Find Full Text PDFThis study is about multiple responsiveness in biomedical materials. This typically implies "orthogonality" (i.e.
View Article and Find Full Text PDFThis study addresses well-known shortcomings of poly(ethylene glycol) (PEG)-based conjugates. PEGylation is by far the most common method employed to overcome immunogenicity and suboptimal pharmacokinetics of, for example, therapeutic proteins but has significant drawbacks. First, PEG offers no protection from denaturation during lyophilization, storage, or oxidation (e.
View Article and Find Full Text PDFWe show the first example of a synergic approach of oxidant (ROS) scavenging carrier and ROS-responsive drug release in the context of a potential therapy against osteoporosis, aiming to inhibit the differentiation of inflammatory cells into osteoclasts. In our "tandem" approach, a branched amphiphilic, PEGylated polysulfide (PPSES-PEG) was preferred over a linear analogue, because of improved homogeneity in the aggregates (spherical micelles vs mixture of wormlike and spherical), increased stability, and higher drug loading (up to ∼22 wt % of antiosteoclastic rapamycin). These effects are ascribed to the branching inhibiting crystallization in the polysulfide blocks.
View Article and Find Full Text PDFWe present the evaluation of a sulfoxide-based polymer (poly(propylene sulfoxide), PPSO) as a potential 'stealth' macromolecule, and at the same time as a pharmacologically active (anti-inflammatory/anti-oxidant) material. The combination of these two concepts may at first seem peculiar since the gold standard polymer in biomaterials and drug delivery, poly(ethylene glycol) (PEG), is 'stealth' due to its chemical and biological inertness, which makes it hardly biologically active. Polysulfoxides, on the contrary, may couple a substantial inertness towards biomolecules under homeostatic conditions, with the possibility to scavenge reactive oxygen species (ROS) associated to inflammation.
View Article and Find Full Text PDFIn this review, a general introduction to biological oxidants (focusing on reactive oxygen species, ROS) and the biomedical rationale behind the development of materials capable of responding to ROS is provided. The state of the art for preparative aspects and mechanistic responses of the most commonly used macromolecular ROS-responsive systems, including polysulfides, polyselenides, polythioketals, polyoxalates, and also oligoproline- and catechol-based materials, is subsequently given. The endowment of multiple responsiveness, with specific emphasis on the cases where a molecular logic gate behavior can be obtained, is focused on.
View Article and Find Full Text PDFFive celecoxib (CXB) acylamide sodium salts, MP-CXB, Cy-CXB, Bz-CXB, CBz-CXB and FBz-CXB were synthesized and characterized. Two simple, fast and validated RP-HPLC methods were developed for simultaneous quantitative determination of the amides and celecoxib in aqueous and biological samples and LOD and LOQ were ≤13.6 and ≤40ng/mL, respectively.
View Article and Find Full Text PDF