Proc Natl Acad Sci U S A
June 2022
Position-effect variegation (PEV) results from the juxtaposition of euchromatic and heterochromatic components of eukaryotic genomes, silencing genes near the new euchromatin/heterochromatin junctions. Silencing is itself heritable through S phase, giving rise to distinctive random patterns of cell clones expressing the genes intermixed with clones in which the genes are silenced. Much of what we know about epigenetic inheritance in the soma stems from work on PEV aimed at identifying the components of the silencing machinery and its mechanism of inheritance.
View Article and Find Full Text PDFPosition effect variegation (PEV) in results from new juxtapositions of euchromatic and heterochromatic chromosomal regions, and manifests as striking bimodal patterns of gene expression. The semirandom patterns of PEV, reflecting clonal relationships between cells, have been interpreted as gene-expression states that are set in development and thereafter maintained without change through subsequent cell divisions. The rate of instability of PEV is almost entirely unexplored beyond the final expression of the modified gene; thus the origin of the expressivity and patterns of PEV remain unexplained.
View Article and Find Full Text PDFOur goal is to draw a line-hypothetical in its totality but experimentally supported at each individual step-connecting the ribosomal DNA and the phenomenon of transgenerational epigenetic inheritance of induced phenotypes. The reasonableness of this hypothesis is offset by its implication, that many (or most) (or all) of the cases of induced-and-inherited phenotypes that are seen to persist for generations are instead unmapped induced polymorphisms in the ribosomal DNA, and thus are the consequence of the peculiar and enduringly fascinating genetics of the highly transcribed repeat DNA structure at that locus.
View Article and Find Full Text PDFUnlabelled: Human cytomegalovirus (HCMV), a betaherpesvirus, persists indefinitely in the human host through poorly understood mechanisms. The UL136 gene is carried within a genetic locus important to HCMV latency termed the UL133/8 locus, which also carries UL133, UL135, and UL138. Previously, we demonstrated that UL136 is expressed as five protein isoforms ranging from 33-kDa to 19-kDa, arising from alternative transcription and, likely, translation initiation mechanisms.
View Article and Find Full Text PDFUnlabelled: Endothelial cells (ECs) are a critical target of viruses, and infection of the endothelium represents a defining point in viral pathogenesis. Human cytomegalovirus (HCMV), the prototypical betaherpesvirus, encodes proteins specialized for entry into ECs and delivery of the genome to the nuclei of ECs. Virus strains competent to enter ECs replicate with differing efficiencies, suggesting that the virus encodes genes for postentry tropism in ECs.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) infects a variety of cell types in humans, resulting in a varied pathogenesis in the immunocompromised host. Endothelial cells (ECs) are considered an important target of HCMV infection that may contribute to viral pathogenesis. Although the viral determinants important for entry into ECs are well defined, the molecular determinants regulating postentry tropism in ECs are not known.
View Article and Find Full Text PDFClinical strains of HCMV encode 20 putative ORFs within a region of the genome termed ULb' that are postulated to encode functions related to persistence or immune evasion. We have previously identified ULb'-encoded pUL138 as necessary, but not sufficient, for HCMV latency in CD34+ hematopoietic progenitor cells (HPCs) infected in vitro. pUL138 is encoded on polycistronic transcripts that also encode 3 additional proteins, pUL133, pUL135, and pUL136, collectively comprising the UL133-UL138 locus.
View Article and Find Full Text PDF