Chromium [Cr(VI)]-induced soil pollution is a serious environmental threat. Bioremediation utilizes specific microbes capable of transforming Cr(VI) into the less toxic Cr(III), however, microbial efficacy can be inhibited by elevated pollutant concentrations and competition from indigenous microbial communities. Thus, this study explored the potential of single and multi-domain microbial consortia encapsulated in alginate to overcome these shortcomings.
View Article and Find Full Text PDFBiochar application emerges as a promising and sustainable solution for the remediation of soils contaminated with potentially toxic metal (loid)s (PTMs), yet its potential to reduce PTM accumulation in crops remains to be fully elucidated. In our study, a hierarchical meta-analysis based on 276 research articles was conducted to quantify the effects of biochar application on crop growth and PTM accumulation. Meanwhile, a machine learning approach was developed to identify the major contributing features.
View Article and Find Full Text PDFLong-term exposure to urban dust containing potentially toxic elements (PTEs) poses detrimental impacts on human health. However, studies estimating human health risks in urban dusts from a global perspective are scarce. We evaluated data for twelve PTEs in urban dusts across 59 countries from 463 published articles, including their concentrations, input sources, and probabilistic risks to human health.
View Article and Find Full Text PDFThe co-occurrence of microplastics (MPs) and heavy metal(loid)s (HMs) has attracted growing scientific interest because of their wide distribution and environmental toxicity. Nevertheless, the interactions between MPs and HMs in soil-plant systems remain unclear. We conducted a meta-analysis with 3226 observations from 87 independent studies to quantify the impact of MPs addition on the plant biomass and HMS accumulation.
View Article and Find Full Text PDFTo avoid the difficulty of separating solids from liquids when reusing powder photocatalysts, 3D stereoscopic photocatalysts were constructed. In this study, three-dimensional S defect-rich MoS hierarchical aerogel was prepared by chemical cross-linking of functional ultrathin 2D MoS. Its phase, micro-morphology and structure were characterized, and it was used in the study of photocatalytic degradation of organic pollutants.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons (PAHs) are major organic pollutants attached to fine particulate matter in the atmosphere. They induce lung inflammation, asthma, and other lung diseases. Exploring the toxic mechanism of PAHs on lung epithelial cells may provide a theoretical basis for the prevention and treatment of respiratory diseases induced by PAHs.
View Article and Find Full Text PDFCrystalline poly-para-xylylene (parylene) has the potential for use as a protective membrane to delay the nucleation of explosives by separating the explosives and their decomposition products to decrease the explosive sensitivity. Here, molecular dynamics (MD) and density functional theory (DFT) techniques were used to calculate the dissociative adsorption configurations of 1,1-diamino-2,2-dinitroethylene (FOX-7) on (001)- and (101)-oriented crystalline parylene membranes. Based on the results of the calculations, this work demonstrates that the -NO-π electrostatic interactions are the dominant passivation mechanism of FOX-7 on these oriented surfaces.
View Article and Find Full Text PDFIn contaminated water and soil, little is known about the role and mechanism of the biometabolic molecule siderophore desferrioxamine-B (DFO) in the biogeochemical cycle of uranium due to complicated coordination and reaction networks. Here, a joint experimental and quantum chemical investigation is carried out to probe the biomineralization of uranyl (UO, referred to as U(VI) hereafter) induced by (abbreviated as ) in the presence of DFO and Fe ion. The results show that the production of mineralized solids {hydrogen-uranium mica [H(UO)(PO)·8HO]} via binding with UO is inhibited by DFO, which can both chelate preferentially UO to form a U(VI)-DFO complex in solution and seize it from U(VI)-biominerals upon solvation.
View Article and Find Full Text PDFWintertime fine particle (PM) pollution remains to be perplexing air quality problems in many parts of China. In this study, PM compositions and aerosol acidity at different pollution levels at an urban cite in the southwest China's Sichuan Basin were investigated during a sustained winter haze episode. Organic matter was the most abundant component of PM, followed by nitrate, sulfate and ammonium.
View Article and Find Full Text PDFThe removal and recovery of uranium [U(VI)] from organic containing wastewater has been a challenging in radioactive wastewater purification. Here, we designed a polyamine/amidoxime polyacrylonitrile fiber (PAN-AO-A) with high removal efficiency, excellent selectivity, excellent organic resistance and low cost by combining the anti-organic properties of amidoxime polyacrylonitrile fiber (PAN-AO-A) with the high adsorption capacity of polyamine polyacrylonitrile fiber, which is used to extract U(VI) from low-level uranium-containing wastewater with high ammonia nitrogen and organic content. PAN-AO-A adsorbent with high grafting rate (86.
View Article and Find Full Text PDFShewanella putrefaciens (S. putrefaciens) is one of the main microorganisms in soil bioreactors, which mainly immobilizes uranium through reduction and mineralization processes. However, the effects of elements such as phosphorus and ZVI, which may be present in the actual environment, on the mineralization and reduction processes are still not clearly understood and the environment is mostly in the absence of oxygen.
View Article and Find Full Text PDFPhosphogypsum (PG), which has great environmental harm and restricts the sustainable development of phosphorus chemical industry, is a solid waste produced in phosphoric acid production. Thermal decomposition of PG is an extensive way to reutilization of resource, and the key point is to establish an appropriate decomposition path and catalyst system of PG. In the work, the strategy for low-temperature and highly-efficient decomposition of PG is established based on the thermodynamic analysis and the experimental research by metal ions to reduce the decomposition temperature.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
June 2023
Based on the composite pollution of atmospheric microbial aerosol, this paper selects the calcite/bacteria complex as the research object which was prepared by calcite particles and two common strains of bacteria (Escherichia coli, Staphylococcus aureus) in the solution system. The morphology, particle size, surface potential, and surface groups of the complex were explored by modern analysis and testing methods, with an emphasis on the interfacial interaction between calcite and bacteria. The SEM, TEM, and CLSM results showed that the morphology of the complex could be divided into three types: bacteria adhering to the surface or edge of micro-CaCO, bacteria aggregating with nano-CaCO, and single nano-CaCO wrapping bacteria.
View Article and Find Full Text PDFInorganic mineral particles play an important role in the formation of atmospheric aerosols in the Sichuan Basin. Atmospheric haze formation is accompanied by the phase transition of mineral particles under high humidity and stable climatic conditions. Backward trajectory analysis was used in this study to determine the migration trajectory of atmospheric mineral particles.
View Article and Find Full Text PDFArsenic (As) and uranium (U) frequently occur together naturally and, in consequence, transform into cocontaminants at sites of uranium mining and processing, yet the simultaneous interaction process of arsenic and uranium has not been well documented. In the present contribution, the influence of arsenate on the removal and reduction of uranyl by the indigenous microorganism Kocuria rosea was characterized using batch experiments combined with species distribution calculation, SEM-EDS, FTIR, XRD and XPS. The results showed that the coexistence of arsenic plays an active role in Kocuria rosea growth and the removal of uranium under neutral and slightly acidic conditions.
View Article and Find Full Text PDFCrop production encounters challenges due to the dearth of nitrogen (N) and phosphorus (P), while excessive chemical fertilizer use causes environmental hazards. The use of N-fixing microbes and P-solubilizing microbes (PSMs) can be a sustainable strategy to overcome these problems. Here, we conducted a greenhouse pot experiment following a completely randomized blocked design to elucidate the influence of co-inoculating N-fixing bacteria () and PSMs ( and ) on atmospheric N-fixation, growth, and yield.
View Article and Find Full Text PDFAim: This study aimed to examine the relationships between how workplace stress and social support affect the level of humanistic caring ability in Chinese nurses.
Design: A cross-sectional study.
Methods: The sample consists of 675 nurses working in major hospitals in China.
In this study, we analyzed the removal efficiency of uranium(U(VI)) in wastewater at relatively low concentrations using strong alkaline ion exchange fiber (SAIEF). Static tests showed that the strong alkali fibers can purify U(VI) containing wastewater in a concentration range of 20-100 mg L with an optimal pH of 10.5 and contact time of 15-30 min.
View Article and Find Full Text PDFCadmium contamination and toxicity on plants and human health is a major problem in China. Safe rice production in Cd-contaminated alkaline soils, with acceptably low Cd levels and high yields, remains an important research challenge. To achieve this, a small-scale field experiment with seven different soil amendment materials was conducted to test their effects performance.
View Article and Find Full Text PDFAtmospheric micro-/nanominerals play an important role in the adsorption, enrichment, and migration of organochlorine pesticides (OCPs). In the present study, the correlations between OCPs and minerals in outdoor atmospheric dustfall were investigated, and the correlations were used to speculate the source of p,p'-(dicofol+dichlorobenzophenone [DBP]), which is the sum of p,p'-dicofol and p,p'-DBP. Atmospheric dustfall samples were collected from 53 sites in the Chengdu-Deyang-Mianyang economic region in the Sichuan basin.
View Article and Find Full Text PDFThe contamination of saline soil with hazardous petroleum hydrocarbons is a common problem across coastal areas globally. Bioaugmentation combined with chemical treatment is an emerging remediation technique, but it currently shows low efficiency under high saline environments. In this study, we screened and used a novel halotolerant lipolytic fungal consortium (HLFC) combined with hematite (FeO) for the bioremediation of diesel contaminated saline soils.
View Article and Find Full Text PDFPhotocatalytic removal of organic pollutants is a promising pollution treatment technology from the aspect of carbon neutrality. The complex diversity of actual wastewater components, as opposed to single-component systems, can significantly affect photocatalytic mechanisms. In this study, complex pollutant systems were created using various coordinating agents, and the effects of P25 on the photocatalytic removal of methyl orange (MO) in these systems and corresponding photocatalytic mechanism were investigated.
View Article and Find Full Text PDFTo safely dispose radioactive waste (including, e.g., thorium and radiostrontium), Ce and Sr were chosen as simulated surrogates of α and β waste and were introduced into the Gd site in GdZrO to maintain the average cationic radius and to compensate for charge.
View Article and Find Full Text PDFThe influence of extracellular polymeric substances (EPS) on the interaction between uranium [U(VI)] and Shewanella putrefaciens (S. putrefaciens), especially the U(VI) biomineralization process occurring on whole cells and cell components of S. putrefaciens was investigated in this study.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
April 2022
Objective To investigate the effect of particulate matter 2.5 (PM) dust on autophagy and epithelial-mesenchymal transition (EMT) in human bronchial epithelial 16HBE cells, and to further explore its underlying mechanism. Methods 16HBE cells were stimulated with PM dust, and the cell viability was evaluated by CCK-8 assay.
View Article and Find Full Text PDF