Publications by authors named "Faqi Cao"

Diabetes-associated chronic skin wounds present a formidable challenge due to inadequate angiogenesis and nerve regeneration during the healing process. In the present study, we introduce a groundbreaking approach in the form of a novel cocktail therapy utilizing a multifunctional supramolecular hydrogel. Formulated through the photo-crosslinking of gelatinized aromatic residues and β-cyclodextrin (β-CD), this injectable hydrogel fosters weak host-guest interactions, offering a promising solution.

View Article and Find Full Text PDF

Bone nonunion poses an urgent clinical challenge that needs to be addressed. Recent studies have revealed that the metabolic microenvironment plays a vital role in fracture healing. Macrophages and bone marrow-derived mesenchymal stromal cells (BMSCs) are important targets for therapeutic interventions in bone fractures.

View Article and Find Full Text PDF

Osteoporosis, characterized by a reduction in bone mineral density, represents a prevalent skeletal disorder with substantial global health implications. Conventional therapeutic strategies, exemplified by bisphosphonates and hormone replacement regimens, though effective, encounter inherent limitations and challenges. Recent years have witnessed the surge of cell-membrane-coated nanoparticles (CMNPs) as a promising intervention for osteoporosis, leveraging their distinct attributes including refined biocompatibility, heightened pharmaceutical payload capacity, as well as targeted drug release kinetics.

View Article and Find Full Text PDF

Oxidative stress, infection, and vasculopathy caused by hyperglycemia are the main barriers for the rapid repair of foot ulcers in patients with diabetes mellitus (DM). In recent times, the discovery of neddylation, a new type of post-translational modification, has been found to regulate various crucial biological processes including cell metabolism and the cell cycle. Nevertheless, its capacity to control the healing of wounds in diabetic patients remains unknown.

View Article and Find Full Text PDF

Various joint pathologies such as osteochondritis dissecans, osteonecrosis, rheumatic disease, and trauma, may result in severe damage of articular cartilage and other joint structures, ranging from focal defects to osteoarthritis (OA). The osteochondral unit is one of the critical actors in this pathophysiological process. New approaches and applications in tissue engineering and regenerative medicine continue to drive the development of OA treatment.

View Article and Find Full Text PDF

Immune homeostasis is delicately mediated by the dynamic balance between effector immune cells and regulatory immune cells. Local deviations from immune homeostasis in the microenvironment of bone fractures, caused by an increased ratio of effector to regulatory cues, can lead to excessive inflammatory conditions and hinder bone regeneration. Therefore, achieving effective and localized immunomodulation of bone fractures is crucial for successful bone regeneration.

View Article and Find Full Text PDF

The diabetic wounds remain to be unsettled clinically, with chronic wounds characterized by drug-resistant bacterial infections, compromised angiogenesis and oxidative damage to the microenvironment. To ameliorate oxidative stress and applying antioxidant treatment in the wound site, we explore the function of folliculin-interacting protein 1 (FNIP1), a mitochondrial gatekeeper protein works to alter mitochondrial morphology, reduce oxidative phosphorylation and protect cells from unwarranted ROS accumulation. And our experiments showed the effects of FNIP1 in ameliorating oxidative stress and rescued impaired angiogenesis of HUVECs in high glucose environment.

View Article and Find Full Text PDF

Bone mesenchymal stem cells (BMSCs) play an important role in maintaining the dynamic balance of bone metabolism. Recent studies have reported that a decrease in the osteogenic function of MSCs is strongly associated with osteoporosis. Melatonin is a neuroendocrine hormone produced in the pineal gland and is essential in the physiological regulation.

View Article and Find Full Text PDF

Fracture combined with traumatic brain injury (TBI) is one of the most common and serious types of compound trauma in the clinic and is characterized by dysfunction of cellular communication in injured organs. Our prior studies found that TBI was capable of enhancing fracture healing in a paracrine manner. Exosomes (Exos), as small extracellular vesicles, are important paracrine vehicles for noncell therapy.

View Article and Find Full Text PDF

Diabetic wound (DW) therapy is currently a big challenge in medicine and strategies to enhance neurogenesis and angiogenesis have appeared to be a promising direction. However, the current treatments have failed to coordinate neurogenesis and angiogenesis simultaneously, leading to an increased disability rate caused by DWs. Herein, a whole-course-repair system is introduced by a hydrogel to concurrently achieve a mutually supportive cycle of neurogenesis-angiogenesis under a favorable immune-microenvironment.

View Article and Find Full Text PDF

Background: Currently, we found that double reverse traction repositor (DRTR) is a treatment with operation convenience and fast in our clinical work. However, the clinical efficacy and safety of DRTR in the reduction of unstable intertrochanteric fractures in elderly patients remain unknown. Therefore, the study aimed to compare the clinical efficacy and safety of DRTR and traction table (TT) in the reduction of unstable intertrochanteric fractures in elderly patients.

View Article and Find Full Text PDF

The ubiquitination-proteasome system (UPS) is crucial in regulating a variety of cellular processes including proliferation, differentiation, and survival. Ubiquitin protein ligase E3 is the most critical molecule in the UPS system. Dysregulation of the UPS system is associated with many conditions.

View Article and Find Full Text PDF

Background: A coronal comminuted femoral intertrochanteric fracture is a special type of fracture that easily leads to internal fixation failure, and the current internal fixation techniques remain controversial. This study aims to evaluate the effect of traction-bed-assisted reduction and double-plate internal fixation in the treatment of comminuted and coronally split intertrochanteric femoral fracture.

Method: Retrospective analyses of the clinical data of 83 patients diagnosed with, and treated for, comminuted and coronally split intertrochanteric femoral fracture from December 2017 to November 2019 were conducted.

View Article and Find Full Text PDF

Ferroptosis is an iron-dependent form of programmed cell death and an important type of biological catabolism. Through the action of divalent iron or ester oxygenase, ferroptosis can induce lipid peroxidation and cell death, regulating a variety of physiological processes. The role of ferroptosis in the modulation of bone homeostasis is a significant topic of interest.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) broadly regulate normal biological functions of bone and the progression of fracture healing and osteoporosis. Recently, it has been reported that miR-1224-5p in fracture plasma is a potential therapy for osteogenesis. To investigate the roles of miR-1224-5p and the Rap1 signaling pathway in fracture healing and osteoporosis development and progression, we used BMMs, BMSCs, and skull osteoblast precursor cells for in vitro osteogenesis and osteoclastogenesis studies.

View Article and Find Full Text PDF

Background: We aimed to compare the intraoperative and early postoperative clinical outcomes of using an acromioclavicular joint hook plate (AJHP) versus a locking plate (LP) in the treatment of anterior sternoclavicular joint dislocation.

Methods: Seventeen patients with anterior sternoclavicular joint dislocation were retrospectively analyzed from May 2014 to September 2019. Six patients were surgically treated with an AJHP, and 11 were surgically treated with an LP.

View Article and Find Full Text PDF

A moderate inflammatory response at the early stages of fracture healing is necessary for callus formation. Over-active and continuous inflammation, however, impairs fracture healing and leads to excessive tissue damage. Adequate fracture healing could be promoted through suppression of local over-active immune cells in the fracture site.

View Article and Find Full Text PDF

Diabetic wounds remain a great challenge for clinicians due to the multiple bacterial infections and oxidative damage. Exosomes, as an appealing nanodrug delivery system, have been widely applied in the treatment of diabetic wounds. Endovascular cells are important component cells of the vascular wall.

View Article and Find Full Text PDF

The aim of this study was to evaluate the clinical application of double-reverse traction for minimally invasive reduction of complex tibial plateau fractures. A retrospective analysis was performed to identify all patients admitted to the Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, from March 2017 to December 2019 with Schatzker type VI tibial plateau fractures. 12 patients were identified (7 men and 5 women) with an average age of 46.

View Article and Find Full Text PDF

The osteoblast/osteoclast and M1/M2 macrophage ratios play critical roles in delayed fracture healing. Robust osteoblast differentiation and M2 macrophage polarization can substantiality promote fracture repair; however, the combined effect of these strategies has not been previously studied. In this study, we constructed a cocktail therapy to simultaneously regulate the osteoblast/osteoclast and M1/M2 macrophage balance.

View Article and Find Full Text PDF

The immune system and skeletal system are closely linked. Macrophages are one of the most important immune cells for bone remodeling, playing a prohealing role mainly through M2 phenotype polarization. Baicalein (5,6,7-trihydroxyflavone, BCL) has been well documented to have a noticeable promotion effect on M2 macrophage polarization.

View Article and Find Full Text PDF

The treatment of diabetic wounds remains a major challenge in clinical practice, with chronic wounds characterized by multiple drug-resistant bacterial infections, angiopathy, and oxidative damage to the microenvironment. Herein, a novel in situ injectable HA@MnO /FGF-2/Exos hydrogel is introduced for improving diabetic wound healing. Through a simple local injection, this hydrogel is able to form a protective barrier covering the wound, providing rapid hemostasis and long-term antibacterial protection.

View Article and Find Full Text PDF