Micro air vehicles (MAVs) capable of high-speed autonomous navigation in unknown environments have the potential to improve applications like search and rescue and disaster relief, where timely and safe navigation is critical. However, achieving autonomous, safe, and high-speed MAV navigation faces systematic challenges, necessitating reduced vehicle weight and size for high-speed maneuvering, strong sensing capability for detecting obstacles at a distance, and advanced planning and control algorithms maximizing flight speed while ensuring obstacle avoidance. Here, we present the safety-assured high-speed aerial robot (SUPER), a compact MAV with a 280-millimeter wheelbase and a thrust-to-weight ratio greater than 5.
View Article and Find Full Text PDFIn dynamic environments, robots require instantaneous detection of moving events with microseconds of latency. This task, known as moving event detection, is typically achieved using event cameras. While light detection and ranging (LiDAR) sensors are essential for robots due to their dense and accurate depth measurements, their use in event detection has not been thoroughly explored.
View Article and Find Full Text PDFUncrewed aerial vehicles (UAVs) rely heavily on visual sensors to perceive obstacles and explore environments. Current UAVs are limited in both perception capability and task efficiency because of a small sensor field of view (FoV). One solution could be to leverage self-rotation in UAVs to extend the sensor FoV without consuming extra power.
View Article and Find Full Text PDFIt is well known that Keller-Segel models serve as a paradigm to describe the self aggregation phenomenon, which exists in a variety of biological processes such as wound healing, tumor growth, etc. In this paper, we study the existence of monotone decreasing spiky steady state and its linear stability property in the Keller-Segel model with logistic growth over one-dimensional bounded domain subject to homogeneous Neumann boundary conditions. Under the assumption that chemo-attractive coefficient is asymptotically large, we construct the single boundary spike and next show this non-constant steady state is locally linear stable via Lyapunov-Schmidt reduction method.
View Article and Find Full Text PDF