Publications by authors named "Fanutti C"

Hepatocellular carcinoma (HCC) is a heterogeneous malignancy with complex carcinogenesis. Although there has been significant progress in the treatment of HCC over the past decades, drug resistance to chemotherapy remains a major obstacle in its successful management. In this study, we were able to reduce chemoresistance in cisplatin-resistant HepG2 cells by either silencing the expression of transglutaminase type 2 (TG2) using siRNA or by the pre-treatment of cells with the TG2 enzyme inhibitor cystamine.

View Article and Find Full Text PDF

The melanocortin-1 receptor (MC1R) is a key regulator of mammalian pigmentation. Melanism in the grey squirrel is associated with an eight amino acid deletion in the mutant melanocortin-1 receptor with 24 base pair deletion (MC1RΔ24) variant. We demonstrate that the MC1RΔ24 exhibits a higher basal activity than the wildtype MC1R (MC1R-wt).

View Article and Find Full Text PDF

Sequence variations in the melanocortin 1 receptor (MC1R) gene are associated with melanism in many different species of mammals, birds, and reptiles. The gray squirrel (Sciurus carolinensis), found in the British Isles, was introduced from North America in the late 19th century. Melanism in the British gray squirrel is associated with a 24-bp deletion in the MC1R.

View Article and Find Full Text PDF

rHuEPO (recombinant human erythropoietin) is a haemopoietic growth factor and a primary regulator of erythropoiesis that is used for the treatment of chronic anaemia associated with RA (rheumatoid arthritis). Erythropoietin also appears to modulate a broad array of cellular processes, including progenitor stem-cell development, cellular integrity, angiogenesis and oxidative damage. These diverse activities suggest the exciting possibility of multiple roles for rHuEPO therapy in a variety of disorders other than RA, including cerebral ischaemia, myocardial infarction, chronic congestive heart failure and cancer.

View Article and Find Full Text PDF

Virions of filamentous bacteriophage fd are capable of displaying multiple copies of peptide epitopes and generating powerful immune responses to them. To investigate the antigen processing mechanisms in human B cell lines used as antigen presenting cells, the major coat protein (pVIII) in intact virions was fluorescently labeled, and its localization in various intracellular compartments was followed using confocal microscopy. We show that the virions were taken up and processed to yield peptides that reach both the major histocompatibility complex (MHC) class II compartment and the endoplasmic reticulum.

View Article and Find Full Text PDF

Anti-p53 antibodies have been detected in the sera of patients with various types of cancers. In this report, we describe the development of a new ELISA aimed at detecting anti-p53 antibodies using two peptides belonging to immunodominant epitopes of the p53 N-terminal region. We first tested the reactivity of the sera by an indirect ELISA using the peptides as a capture system.

View Article and Find Full Text PDF

Gram-negative bacteria are enveloped by a system of two membranes, and they use specialized multicomponent, energy-driven pumps to transport molecules directly across this double-layered partition from the cell interior to the extra-cellular environment. One component of these pumps is embedded in the outer-membrane, and the paradigm for its structure and function is the TolC protein from Escherichia coli. A common component of a wide variety of efflux pumps, TolC and its homologues are involved in the export of chemically diverse molecules ranging from large protein toxins, such as alpha-hemolysin, to small toxic compounds, such as antibiotics.

View Article and Find Full Text PDF

Although much effort has been expended on evaluating recombinant proteins and synthetic peptides as immunogens, they have generally proved incapable of inducing an efficient cytotoxic T-cell (CTL) response. Filamentous bacteriophage fd can display multiple copies of foreign peptides in the N-terminal region of its major coat protein pVIII, 2,700 copies of which make up the virus capsid. Here we show that fd virions displaying peptide RT2 (ILKEPVHGV), corresponding to residues 309-317 of the reverse transcriptase (RTase) of HIV-1, are able to prime a CTL response specific for this HIV-1 epitope in human cell lines.

View Article and Find Full Text PDF

We have investigated the substrate subsite recognition requirement of the xyloglucan endo-transglycosylase/xyloglucan-specific endo-(1-->4)-beta-D-glucanase (NXET) from the cotyledons of nasturtium seedlings. Seed xyloglucans are composed almost entirely of the Glc4 subunits XXXG, XLXG, XXLG and XLLG, where G represents an unsubstituted glucose residue, X a xylose-substituted glucose residue and L a galactosyl-xylose-substituted glucose residue. Thus in the xyloglucan sequence shown below, the xylose (Xyl) residues at the backbone glucose (Glc) residues numbered -3, -2, +2 and +3 may be galactose-substituted, and NXET cleaves between the unsubstituted glucose at -1 and the xylose-substituted glucose at +1, which never carries a galactosyl substituent.

View Article and Find Full Text PDF

Two cDNAs, designated xynA and manA, encoding xylanase A (XYLA) and mannanase A (MANA), respectively, were isolated from a cDNA library derived from mRNA extracted from the anaerobic fungus, Piromyces. XYLA and MANA displayed properties typical of endo-beta 1,4-xylanases and mannanases, respectively. Neither enzyme hydrolyzed cellulosic substrates.

View Article and Find Full Text PDF

The action on tamarind seed xyloglucan of the pure, xyloglucan-specific endo-(1-->4)-beta-D-glucanase from nasturtium (Tropaeolum majus L.) cotyledons has been compared with that of a pure endo-(1-->)-beta-D-glucanase ('cellulase') of fungal origin. The fungal enzyme hydrolysed the polysaccharide almost completely to a mixture of the four xyloglucan oligosaccharides: [formula: see text] Exhaustive digestion with the nasturtium enzyme gave the same four oligosaccharides plus large amounts of higher oligosaccharides and higher-polymeric material.

View Article and Find Full Text PDF

The major polysaccharide in tamarind seed is a galactoxyloglucan for which the ratios galactose:xylose:glucose are 1:2:25:2.8. A minor polysaccharide (2-3%) contains branched (1----5)-alpha-L-arabinofuranan and unbranched (1----4)-beta-D-galactopyranan features.

View Article and Find Full Text PDF

The α-xylosidase which is involved in the postgerminative mobilisation of xyloglucan in nasturtium seed cotyledons has now been purified to apparent homogeneity by a facile procedure involving lectin affinity chromatography. The purified enzyme, a glycoprotein, moved as a single band (apparent molecular weight 85000) on sodium dodecyl sulphate-gel electrophoresis, whilst isoelectric focusing gave a number of enzymatically active protein bands spanning the range pI = 5.0 to 7.

View Article and Find Full Text PDF