Publications by authors named "Fanny de Busserolles"

Vertebrate vision is accomplished by two phenotypically distinct types of photoreceptors in the retina: the saturation-resistant cones for the detection of bright light and the highly sensitive rods for dim light conditions [1]. The current dogma is that, during development, all vertebrates initially feature a cone-dominated retina, and rods are added later [2, 3]. By studying the ontogeny of vision in three species of deep-sea fishes, we show that their larvae express cone-specific genes in photoreceptors with rod-like morphologies.

View Article and Find Full Text PDF
Article Synopsis
  • Most vertebrates typically have one layer of rod photoreceptors for dim-light vision, but over 100 fish species, including deep-sea and nocturnal reef fish, exhibit a multibank retina with multiple rod layers.
  • Researchers used a combination of histology, electrophysiology, and amino acid analysis on three species of nocturnal reef fish to study how these multiple rod layers affect sensory advantages.
  • Findings revealed that fish with multibank retinas have faster vision and better responses to different light intensities, providing the first functional evidence that these retinas enhance both dim-light sensitivity and the speed of vision.
View Article and Find Full Text PDF

The visual capabilities of fish are optimized for their ecology and light environment over evolutionary time. Similarly, fish vision can adapt to regular changes in light conditions within their lifetime, e.g.

View Article and Find Full Text PDF

Developmental changes to the visual systems of animals are often associated with ecological shifts. Reef fishes experience a change in habitat between larval life in the shallow open ocean to juvenile and adult life on the reef. Some species also change their lifestyle over this period and become nocturnal.

View Article and Find Full Text PDF

Ontogenetic changes in the habitats and lifestyles of animals are often reflected in their visual systems. Coral reef fishes start life in the shallow open ocean but inhabit the reef as juveniles and adults. Alongside this change in habitat, some species also change lifestyles and become nocturnal.

View Article and Find Full Text PDF
Article Synopsis
  • Vision is crucial for the survival of animals, aiding in food finding, mate selection, predator avoidance, resource defense, and navigation through environments.
  • The Picasso triggerfish has been extensively studied for its visual and navigational behaviors, but its molecular and anatomical visual system has not been thoroughly examined until now.
  • The study identified various visual opsins in the triggerfish and revealed distinct expression patterns, along with anatomical measurements that provided new insights into their visual acuity, potentially influencing future research on this species.
View Article and Find Full Text PDF

Among fishes in the family Poeciliidae, signals such as colour patterns, ornaments and courtship displays play important roles in mate choice and male-male competition. Despite this, visual capabilities in poeciliids are understudied, in particular, visual acuity, the ability to resolve detail. We used three methods to quantify visual acuity in male and female green swordtails (Xiphophorus helleri), a species in which body size and the length of the male's extended caudal fin ('sword') serve as assessment signals during mate choice and agonistic encounters.

View Article and Find Full Text PDF

The visual systems of teleost fishes usually match their habitats and lifestyles. Since coral reefs are bright and colourful environments, the visual systems of their diurnal inhabitants have been more extensively studied than those of nocturnal species. In order to fill this knowledge gap, we conducted a detailed investigation of the visual system of the nocturnal reef fish family Holocentridae.

View Article and Find Full Text PDF

Bats are nocturnal mammals known for their ability to echolocate, yet all bats can see, and most bats of the family Pteropodidae (fruit bats) do not echolocate - instead they rely mainly on vision and olfaction to forage. We investigated whether echolocating bats, given their limited reliance on vision, have poorer spatial resolving power (SRP) than pteropodids and whether tongue click echolocating fruit bats differ from non-echolocating fruit bats in terms of visual performance. We compared the number and distribution of retinal ganglion cells (RGCs) as well as the maximum anatomical SRP derived from these distributions in 4 species of bats: Myotis daubentonii, a laryngeal echolocating bat from the family Vespertilionidae, Rousettus aegyptiacus, a tongue clicking echolocating bat from the family Pteropodidae, and Pteropus alecto and P.

View Article and Find Full Text PDF

Coral reefs are one of the most species rich and colourful habitats on earth and for many coral reef teleosts, vision is central to their survival and reproduction. The diversity of reef fish visual systems arises from variations in ocular and retinal anatomy, neural processing and, perhaps most easily revealed by, the peak spectral absorbance of visual pigments. This review examines the interplay between retinal morphology and light environment across a number of reef fish species, but mainly focusses on visual adaptations at the molecular level (i.

View Article and Find Full Text PDF
Article Synopsis
  • The deep-sea is a vast and dark environment where light is crucial for survival, with two main light sources: diminishing downwelling light and bioluminescence from animals.
  • Many teleost fish thrive in this challenging habitat by relying on their highly adapted visual systems, which have evolved in unique and remarkable ways.
  • The review explores the diversity of these visual adaptations among deep-sea teleosts and discusses recent findings related to their optical and retinal specializations.
View Article and Find Full Text PDF

Ontogenetic changes of the visual system are often correlated with shifts in habitat and feeding behaviour of animals. Coral reef fishes begin their lives in the pelagic zone and then migrate to the reef. This habitat transition frequently involves a change in diet and light environment as well as major morphological modifications.

View Article and Find Full Text PDF

Vision plays a major role in the life of most teleosts, and is assumingly well adapted to each species ecology and behaviour. Using a multidisciplinary approach, we scrutinised several aspects of the visual system and ecology of the Great Barrier Reef anemonefish, Amphiprion akindynos, including its orange with white patterning, retinal anatomy and molecular biology, its symbiosis with anemones and sequential hermaphroditism. Amphiprion akindynos possesses spectrally distinct visual pigments and opsins: one rod opsin, RH1 (498 nm), and five cone opsins, SWS1 (370 nm), SWS2B (408 nm), RH2B (498 nm), RH2A (520 nm), and LWS (554 nm).

View Article and Find Full Text PDF

Vertebrate vision is accomplished through light-sensitive photopigments consisting of an opsin protein bound to a chromophore. In dim light, vertebrates generally rely on a single rod opsin [rhodopsin 1 (RH1)] for obtaining visual information. By inspecting 101 fish genomes, we found that three deep-sea teleost lineages have independently expanded their gene repertoires.

View Article and Find Full Text PDF

Many fishes, both freshwater or marine, have colour vision that may outperform humans. As a result, to understand the behavioural tasks that vision enables; including mate choice, feeding, agonistic behaviour and camouflage, we need to see the world through a fish's eye. This includes quantifying the variable light environment underwater and its various influences on vision.

View Article and Find Full Text PDF

Most vertebrates have a duplex retina comprising two photoreceptor types, rods for dim-light (scotopic) vision and cones for bright-light (photopic) and color vision. However, deep-sea fishes are only active in dim-light conditions; hence, most species have lost their cones in favor of a simplex retina composed exclusively of rods. Although the pearlsides, spp.

View Article and Find Full Text PDF

Ecological and behavioural constraints play a major role in shaping the visual system of different organisms. In the mesopelagic zone of the deep- sea, between 200 and 1000 m, very low intensities of downwelling light remain, creating one of the dimmest habitats in the world. This ambient light is, however, enhanced by a multitude of bioluminescent signals emitted by its inhabitants, but these are generally dim and intermittent.

View Article and Find Full Text PDF

The distinct behaviours of animals and the varied habitats in which animals live place different requirements on their visual systems. A trade-off exists between resolution and sensitivity, with these properties varying across the retina. Spectral sensitivity, which affects both achromatic and chromatic (colour) vision, also varies across the retina, though the function of this inhomogeneity is less clear.

View Article and Find Full Text PDF

Deep-sea fishes possess several adaptations to facilitate vision where light detection is pushed to its limit. Lanternfishes (Myctophidae), one of the world's most abundant groups of mesopelagic fishes, possess a novel and unique visual specialisation, a sexually dimorphic photostable yellow pigmentation, constituting the first record of a visual sexual dimorphism in any non-primate vertebrate. The topographic distribution of the yellow pigmentation across the retina is species specific, varying in location, shape and size.

View Article and Find Full Text PDF

Topographic analyses of retinal ganglion cell density are very useful in providing information about the visual ecology of a species by identifying areas of acute vision within the visual field (i.e. areas of high cell density).

View Article and Find Full Text PDF

The mesopelagic zone of the deep-sea (200-1000 m) is characterised by exponentially diminishing levels of downwelling sunlight and by the predominance of bioluminescence emissions. The ability of mesopelagic organisms to detect and behaviourally react to downwelling sunlight and/or bioluminescence will depend on the visual task and ultimately on the eyes and their capacity for detecting low levels of illumination and intermittent point sources of bioluminescent light. In this study, we investigate the diversity of the visual system of the lanternfish (Myctophidae).

View Article and Find Full Text PDF

Lanternfishes are one of the most abundant groups of mesopelagic fishes in the world's oceans and play a critical role in biomass vertical turnover. Despite their importance, very little is known about their physiology or how they use their sensory systems to survive in the extreme conditions of the deep sea. In this study, we provide a comprehensive description of the general morphology of the myctophid eye, based on analysis of 53 different species, to understand better their visual capabilities.

View Article and Find Full Text PDF

One of the most common visual adaptations seen in the mesopelagic zone (200-1000 m), where the amount of light diminishes exponentially with depth and where bioluminescent organisms predominate, is the enlargement of the eye and pupil area. However, it remains unclear how eye size is influenced by depth, other environmental conditions and phylogeny. In this study, we determine the factors influencing variability in eye size and assess whether this variability is explained by ecological differences in habitat and lifestyle within a family of mesopelagic fishes characterized by broad intra- and interspecific variance in depth range and luminous patterns.

View Article and Find Full Text PDF

In the past few decades, hydrothermal vent research has progressed immensely, resulting in higher-quality samples and long-term studies. With time, scientists are becoming more aware of the impacts of sampling on the faunal communities and are looking for less invasive ways to investigate the vent ecosystems. In this perspective, imagery analysis plays a very important role.

View Article and Find Full Text PDF