Prime-boost vaccination employing heterologous viral vectors encoding an antigen is an effective strategy to maximize the antigen-specific immune response. Replication-deficient adenovirus serotype 5 (Ad5) is currently being evaluated clinically in North America as a prime in conjunction with oncolytic rhabdovirus Maraba virus (MG1) as a boost. The use of an oncolytic rhabdovirus encoding a tumor antigen elicits a robust anti-cancer immune response and extends survival in murine models of cancer.
View Article and Find Full Text PDFProstate cancer (PCa) was estimated to have the second highest global incidence rate for male non-skin tumors and is the fifth most deadly in men thus mandating the need for novel treatment options. MG1-Maraba is a potent and versatile oncolytic virus capable of lethally infecting a variety of prostatic tumor cell lines alongside primary PCa biopsies and exerts direct oncolytic effects against large TRAMP-C2 tumors . An oncolytic immunotherapeutic strategy utilizing a priming vaccine and intravenously administered MG1-Maraba both expressing the human six-transmembrane antigen of the prostate (STEAP) protein generated specific CD8+ T-cell responses against multiple STEAP epitopes and resulted in functional breach of tolerance.
View Article and Find Full Text PDF() is one of the most ancient human pathogens, yet the exact mechanism(s) of host defense against remains unclear. Although one-third of the world's population is chronically infected with , only 5 to 10% develop active disease. This indicates that, in addition to resistance mechanisms that control bacterial burden, the host has also evolved strategies to tolerate the presence of to limit disease severity.
View Article and Find Full Text PDFThe dogma that adaptive immunity is the only arm of the immune response with memory capacity has been recently challenged by several studies demonstrating evidence for memory-like innate immune training. However, the underlying mechanisms and location for generating such innate memory responses in vivo remain unknown. Here, we show that access of Bacillus Calmette-Guérin (BCG) to the bone marrow (BM) changes the transcriptional landscape of hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs), leading to local cell expansion and enhanced myelopoiesis at the expense of lymphopoiesis.
View Article and Find Full Text PDFThe phagocytosis of apoptotic cells and associated vesicles (efferocytosis) by DCs is an important mechanism for both self tolerance and host defense. Although some of the engulfment ligands involved in efferocytosis have been identified and studied in vitro, the contributions of these ligands in vivo remain ill defined. Here, we determined that during Mycobacterium tuberculosis (Mtb) infection, the engulfment ligand annexin1 is an important mediator in DC cross-presentation that increases efferocytosis in DCs and intrinsically enhances the capacity of the DC antigen-presenting machinery.
View Article and Find Full Text PDFTo subvert host immunity, influenza A virus (IAV) induces early apoptosis in innate immune cells by disrupting mitochondria membrane potential via its polymerase basic protein 1-frame 2 (PB1-F2) accessory protein. Whether immune cells have mechanisms to counteract PB1-F2-mediated apoptosis is currently unknown. Herein, we define that the host mitochondrial protein nucleotide-binding oligomerization domain-like receptor (NLR)X1 binds to viral protein PB1-F2, preventing IAV-induced macrophage apoptosis and promoting both macrophage survival and type I IFN signaling.
View Article and Find Full Text PDFAspirin gained tremendous popularity during the 1918 Spanish Influenza virus pandemic, 50 years prior to the demonstration of their inhibitory action on prostaglandins. Here, we show that during influenza A virus (IAV) infection, prostaglandin E2 (PGE2) was upregulated, which led to the inhibition of type I interferon (IFN) production and apoptosis in macrophages, thereby causing an increase in virus replication. This inhibitory role of PGE2 was not limited to innate immunity, because both antigen presentation and T cell mediated immunity were also suppressed.
View Article and Find Full Text PDFCD8(+) T cells undergo rapid expansion during infection with intracellular pathogens, which is followed by swift and massive culling of primed CD8(+) T cells. The mechanisms that govern the massive contraction and maintenance of primed CD8(+) T cells are not clear. We show in this study that the transcription factor, FoxO3a, does not influence Ag presentation and the consequent expansion of CD8(+) T cell response during Listeria monocytogenes infection, but plays a key role in the maintenance of memory CD8(+) T cells.
View Article and Find Full Text PDFPathogens that reside in the phagosomes of infected cells persist despite the presence of potent T cell responses. We addressed the mechanism of immune evasion by using a mouse model of Salmonella typhimurium (ST). Recombinants of ST were generated that translocated antigen to the cytosol or phagosomes of infected cells.
View Article and Find Full Text PDFThe murine model of T. cruzi infection has provided compelling evidence that development of host resistance against intracellular protozoans critically depends on the activation of members of the Toll-like receptor (TLR) family via the MyD88 adaptor molecule. However, the possibility that TLR/MyD88 signaling pathways also control the induction of immunoprotective CD8+ T cell-mediated effector functions has not been investigated to date.
View Article and Find Full Text PDFVaccines have had an unquestionable impact on public health during the last century. The most likely reason for the success of vaccines is the robust protective properties of specific antibodies. However, antibodies exert a strong selective pressure and many microorganisms, such as the obligatory intracellular parasite Trypanosoma cruzi, have been selected to survive in their presence.
View Article and Find Full Text PDFImmunisation with Amastigote Surface Protein 2 (asp-2) and trans-sialidase (ts) genes induces protective immunity in highly susceptible A/Sn mice, against infection with parasites of the Y strain of Trypanosoma cruzi. Based on immunological and biological strain variations in T. cruzi parasites, our goal was to validate our vaccination results using different parasite strains.
View Article and Find Full Text PDFIschemia reperfusion injury (IRI) is a potential contributor for the development of chronic allograft nephropathy. T cells are important mediators of injury, even in the absence of alloantigens. We performed a depletion of TCD4(+)CTLA4(+)Foxp3(+) cells with anti-CD25(PC61), a treatment with anti-GITR (DTA-1) and rat-IgG, followed by 45 min of ischemia and 24/72 h of reperfusion, and then analyzed blood urea, kidney histopathology and gene expression in kidneys by QReal Time PCR.
View Article and Find Full Text PDFInterference or competition between CD8(+) T cells restricted by distinct MHC-I molecules can be a powerful means to establish an immunodominant response. However, its importance during infections is still questionable. In this study, we describe that following infection of mice with the human pathogen Trypanosoma cruzi, an immunodominant CD8(+) T cell immune response is developed directed to an H-2K(b)-restricted epitope expressed by members of the trans-sialidase family of surface proteins.
View Article and Find Full Text PDFSynthetic oligonucleotides (ODNs) containing immunostimulatory CpG motifs (CpG) are a new class of adjuvants suitable for the development of recombinant vaccines. Here we describe that endogenous interferon (IFN) was critical for the adjuvant activity of CpG ODN as genetically deficient mice developed significantly lower IgG antibody titers following immunization with recombinant proteins. In contrast, the absence of endogenous IL-12/IL-23 or IL-4 had little impact on the magnitude of the antibody response but instead caused a dramatic change in the pattern of IgG isotypes.
View Article and Find Full Text PDFBackground: Following infection with viruses, bacteria or protozoan parasites, naïve antigen-specific CD8(+) T cells undergo a process of differentiation and proliferation to generate effector cells. Recent evidences suggest that the timing of generation of specific effector CD8(+) T cells varies widely according to different pathogens. We hypothesized that the timing of increase in the pathogen load could be a critical parameter governing this process.
View Article and Find Full Text PDFOne of the most promising vaccine candidates against the erythrocytic forms of malaria is the 19 kDa C-terminal region of the merozoite surface protein 1 (MSP1(19)). As part of our studies aimed at the development of a Plasmodium vivax malaria vaccine, we characterized the immunogenic properties of a new bacterial recombinant protein containing the P. vivax MSP1(19) and two helper T-cell epitopes, the synthetic universal pan allelic DR epitope (PADRE) and a new internal MSP1 P.
View Article and Find Full Text PDFThe kinetics of effector CD8+-T-cell responses to specific Trypanosoma cruzi epitopes was investigated after challenge. Our results suggest that the delayed kinetics differs from that observed in other microbial infections and facilitates the establishment of the disease in naïve mice. In contrast, in vaccinated mice, the swift CD8+-T-cell response helps host survival after challenge.
View Article and Find Full Text PDFThe pan HLA DR-binding epitope (PADRE) has been proposed as a simple carrier epitope suitable for use in the development of synthetic and recombinant vaccines. Using the mouse model, we evaluated whether PADRE could improve adjuvant-assisted immunizations with a recombinant malarial protein containing the 19kDa C-terminal region of merozoite surface protein 1 (MSP1(19)) that is a Plasmodium vivax vaccine candidate. Initially, the antibody immune response was evaluated in C57BL/6 mice, a mouse strain which develops a strong T cell immune response to PADRE.
View Article and Find Full Text PDF