Microencapsulation is being investigated as a means to avoid rejection of transplanted pancreatic islets. Monitoring bead distribution and stability in vivo is an important step toward improving microencapsulated islet transplantation strategies. Islet co-encapsulation with gadolinium-labeled mesoporous silica nanoparticles (Gd-MSNs) could allow bead visualization while immobilizing and limiting the potential internalization of the contrast agent.
View Article and Find Full Text PDFThin films made of mesoporous silica nanoparticles (MSNs) are finding new applications in catalysis, optics, as well as in biomedicine. The fabrication of MSNs thin films requires a precise control over the deposition and sintering of MSNs on flat substrates. In this study, MSNs of narrow size distribution (150 nm) are synthesized, and then assembled onto flat silicon substrates, by means of a dip-coating process.
View Article and Find Full Text PDF