Publications by authors named "Fanny Ng"

Although, glial cells have well characterized functions in the developing and mature brain, it is only in the past decade that roles for these cells in behavior and plasticity have been delineated. Glial astrocytes and glia-neuron signaling, for example, are now known to have important modulatory functions in sleep, circadian behavior, memory and plasticity. To better understand mechanisms of glia-neuron signaling in the context of behavior, we have conducted cell-specific, genome-wide expression profiling of adult Drosophila astrocyte-like brain cells and performed RNA interference (RNAi)-based genetic screens to identify glial factors that regulate behavior.

View Article and Find Full Text PDF

All eukaryotic cells secrete a range of proteins in a constitutive or regulated manner through the conventional or canonical exocytic/secretory pathway characterized by vesicular traffic from the endoplasmic reticulum, through the Golgi apparatus, and towards the plasma membrane. However, a number of proteins are secreted in an unconventional manner, which are insensitive to inhibitors of conventional exocytosis and use a route that bypasses the Golgi apparatus. These include cytosolic proteins such as fibroblast growth factor 2 (FGF2) and interleukin-1β (IL-1β), and membrane proteins that are known to also traverse to the plasma membrane by a conventional process of exocytosis, such as α integrin and the cystic fibrosis transmembrane conductor (CFTR).

View Article and Find Full Text PDF

Unlike founding members of the Ras superfamily of small GTPases that are prominently known for oncogenic signaling, members of the Rab subfamily are key regulators of cellular membrane traffic. However, a number of Rabs have in recent years also been strongly implicated as tumorigenic or metastatic biomarkers. Rab23 is an emerging example whose differential expression in tumor cells and functional association with proliferation and invasiveness is attracting attention as a useful cancer marker and a potential therapeutic target.

View Article and Find Full Text PDF

We previously showed that endocytosis and/or vesicle recycling mechanisms are essential in adult Drosophila glial cells for the neuronal control of circadian locomotor activity. In this study, our goal was to identify specific glial vesicle trafficking, recycling, or release factors that are required for rhythmic behavior. From a glia-specific, RNAi-based genetic screen, we identified eight glial factors that are required for normally robust circadian rhythms in either a light-dark cycle or in constant dark conditions.

View Article and Find Full Text PDF

The silent mating type information regulation 2 proteins (sirtuins) 1 of class III histone deacetylases (HDACs) have been associated with health span and longevity. SIRT1, the best studied member of the mammalian sirtuins, has a myriad of roles in multiple tissues and organs. However, a significant part of SIRT1's role that impinges on aging and lifespan may lie in its activities in the central nervous system (CNS) neurons.

View Article and Find Full Text PDF

Brain glial cells, in particular astrocytes and microglia, secrete signaling molecules that regulate glia-glia or glia-neuron communication and synaptic activity. While much is known about roles of glial cells in nervous system development, we are only beginning to understand the physiological functions of such cells in the adult brain. Studies in vertebrate and invertebrate models, in particular mice and Drosophila, have revealed roles of glia-neuron communication in the modulation of complex behavior.

View Article and Find Full Text PDF

The analysis of adult astrocyte glial cells has revealed a remarkable heterogeneity with regard to morphology, molecular signature, and physiology. A key question in glial biology is how such heterogeneity arises during brain development. One approach to this question is to identify genes with differential astrocyte expression during development; certain genes expressed later in neural development may contribute to astrocyte differentiation.

View Article and Find Full Text PDF

Studies on mitochondria protein import had revealed in detail molecular mechanisms of how peptides and proteins could be selectively targeted and translocated across membrane bound organelles. The opposite process of mitochondrial export, while known to occur in various aspects of cellular physiology and pathology, is less well understood. Two very recent reports have indicated that a large mitochondrial matrix protein complex, the pyruvate dehydrogenase complex (PDC) (or its component subunits), could be exported to the lysosomes and the nucleus, respectively.

View Article and Find Full Text PDF

Transcriptional/translational feedback loops drive daily cycles of expression in clock genes and clock-controlled genes, which ultimately underlie many of the overt circadian rhythms manifested by organisms. Moreover, phosphorylation of clock proteins plays crucial roles in the temporal regulation of clock protein activity, stability and subcellular localization. dCLOCK (dCLK), the master transcription factor driving cyclical gene expression and the rate-limiting component in the Drosophila circadian clock, undergoes daily changes in phosphorylation.

View Article and Find Full Text PDF

Circadian (≅ 24 h) clocks control daily rhythms in metabolism, physiology, and behavior in animals, plants, and microbes. In Drosophila, these clocks keep circadian time via transcriptional feedback loops in which clock-cycle (CLK-CYC) initiates transcription of period (per) and timeless (tim), accumulating levels of PER and TIM proteins feed back to inhibit CLK-CYC, and degradation of PER and TIM allows CLK-CYC to initiate the next cycle of transcription. The timing of key events in this feedback loop are controlled by, or coincide with, rhythms in PER and CLK phosphorylation, where PER and CLK phosphorylation is high during transcriptional repression.

View Article and Find Full Text PDF

Sirt1, the class III histone deacetylase, is generally associated with increased life span and with a pro-survival effect in neurons stressed by pathological factors. Recent work, however, suggests that Sirt1 silencing could also promote neuronal survival. A possible reason suggested is Sirt1 silencing enhanced expression of both IGF-1 and IGF-1 receptor, signaling from which promotes survival.

View Article and Find Full Text PDF

The sirtuin family of class III histone deacetylases has been extensively implicated in modulating a myriad of cellular processes, including energy metabolism, stress response, cell/tissue survival and malignancy. Recent studies have also identified multifaceted roles for Sirt1 and Sirt2 in the regulation of autophagy. Sirt1 could influence autophagy directly via its deacetylation of key components of the autophagy induction network, such as the products of autophagy genes (Atg) 5, 7, and 8.

View Article and Find Full Text PDF

To investigate the regulation of Drosophila melanogaster behavior by biogenic amines, we have exploited the broad requirement of the vesicular monoamine transporter (VMAT) for the vesicular storage and exocytotic release of all monoamine neurotransmitters. We used the Drosophila VMAT (dVMAT) null mutant to globally ablate exocytotic amine release and then restored DVMAT activity in either individual or multiple aminergic systems, using transgenic rescue techniques. We find that larval survival, larval locomotion, and female fertility rely predominantly on octopaminergic circuits with little apparent input from the vesicular release of serotonin or dopamine.

View Article and Find Full Text PDF

As frontline nurses, we know firsthand the many challenges of renal disease faced by our patients and the impact on their lives and their families. How can we help them cope with their illness? How can we improve their quality of life? How can we prevent the complications inherent to the disease? How do we know we are doing a good job? Where do we start? The purpose of this presentation is to showcase the global management of the hemodialysis (HD) patient. It provides a collaborative and systematic approach to assessing, implementing, evaluating and coordinating the physiologic and the psychosocial aspects of their care.

View Article and Find Full Text PDF

RNA-binding proteins mediate posttranscriptional functions in the circadian systems of multiple species. A conserved RNA recognition motif (RRM) protein encoded by the lark gene is postulated to serve circadian output and molecular oscillator functions in Drosophila and mammals, respectively. In no species, however, has LARK been eliminated, in vivo, to determine the consequences for circadian timing.

View Article and Find Full Text PDF

Lysosomes serve key degradative functions for the turnover of membrane lipids and protein components. Its biogenesis is principally dependent on exocytic traffic from the late endosome via the trans-Golgi network, and it also receives cargo to be degraded from the endocytic pathway. Membrane trafficking to the late endosome-lysosome is tightly regulated to maintain the amplitude of signalling events and cellular homeostasis.

View Article and Find Full Text PDF

A detailed structure/function analysis of Drosophila p90 ribosomal S6 kinase (S6KII) or its mammalian homolog RSK has not been performed in the context of neuronal plasticity or behavior. We previously reported that S6KII is required for normal circadian periodicity. Here we report a site-directed mutagenesis of S6KII and analysis of mutants, in vivo, that identifies functional domains and phosphorylation sites critical for the regulation of circadian period.

View Article and Find Full Text PDF

Background: An important goal of contemporary neuroscience research is to define the neural circuits and synaptic interactions that mediate behavior. In both mammals and Drosophila, the neuronal circuitry controlling circadian behavior has been the subject of intensive investigation, but roles for glial cells in the networks controlling rhythmic behavior have only begun to be defined in recent studies.

Results: Here, we show that conditional, glial-specific genetic manipulations affecting membrane (vesicle) trafficking, the membrane ionic gradient, or calcium signaling lead to circadian arrhythmicity in adult behaving Drosophila.

View Article and Find Full Text PDF

There is a universal requirement for post-translational regulatory mechanisms in circadian clock systems. Previous work in Drosophila has identified several kinases, phosphatases, and an E3 ligase that are critical for determining the nuclear translocation and/or stability of clock proteins. The present study evaluated the function of p90 ribosomal S6 kinase (RSK) in the Drosophila circadian system.

View Article and Find Full Text PDF

Background: The Drosophila circadian oscillator is composed of transcriptional feedback loops in which CLOCK-CYCLE (CLK-CYC) heterodimers activate their feedback regulators period (per) and timeless (tim) via E-box mediated transcription. These feedback loop oscillators are present in distinct clusters of dorsal and lateral neurons in the adult brain, but how this pattern of expression is established during development is not known. Since CLK is required to initiate feedback loop function, defining the pattern of CLK expression in embryos and larvae will shed light on oscillator neuron development.

View Article and Find Full Text PDF

Fragile X syndrome (FXS) is the most common form of hereditary mental retardation. FXS patients have a deficit for the fragile X mental retardation protein (FMRP) that results in abnormal neuronal dendritic spine morphology and behavioral phenotypes, including sleep abnormalities. In a Drosophila model of FXS, flies lacking the dfmr1 protein (dFMRP) have abnormal circadian rhythms apparently as a result of altered clock output.

View Article and Find Full Text PDF

In Drosophila, cryptochrome (cry) encodes a blue-light photoreceptor that mediates light input to circadian oscillators and sustains oscillator function in peripheral tissues. The levels of cry mRNA cycle with a peak at approximately ZT5, which is similar to the phase of Clock (Clk) mRNA cycling in Drosophila. To understand how cry spatial and circadian expression is regulated, a series of cry-Gal4 trans-genes containing different portions of cry upstream and intron 1 sequences were tested for spatial and circadian expression.

View Article and Find Full Text PDF

Drosophila circadian oscillators comprise interlocked period (per)/timeless (tim) and Clock (Clk) transcriptional/translational feedback loops. Within these feedback loops, CLOCK (CLK) and CYCLE (CYC) bind E-box elements to activate per and tim transcription, and we now show that at the same time CLK-CYC repress Clk by activating the transcriptional repressor vrille (vri), thus accounting for the opposite cycling phases of these transcripts and identifying vri as the negative component of the Clk-feedback-loop. The core oscillator mechanism is assumed to be the same for oscillators in different tissues.

View Article and Find Full Text PDF

The Drosophila circadian oscillator consists of interlocked period (per)/timeless (tim) and Clock (Clk) transcriptional/translational feedback loops. Within these feedback loops, CLK and CYCLE (CYC) activate per and tim transcription at the same time as they repress Clk transcription, thus controlling the opposite cycling phases of these transcripts. CLK-CYC directly bind E box elements to activate transcription, but the mechanism of CLK-CYC-dependent repression is not known.

View Article and Find Full Text PDF