Social anthropology and ethnographic studies have described kinship systems and networks of contact and exchange in extant populations. However, for prehistoric societies, these systems can be studied only indirectly from biological and cultural remains. Stable isotope data, sex and age at death can provide insights into the demographic structure of a burial community and identify local versus non-local childhood signatures, archaeogenetic data can reconstruct the biological relationships between individuals, which enables the reconstruction of pedigrees, and combined evidence informs on kinship practices and residence patterns in prehistoric societies.
View Article and Find Full Text PDFObjectives: The history of the Caribbean region is marked by numerous and various successive migration waves that resulted in a global blending of African, European, and Amerindian lineages. As the origin and genetic composition of the current population of French Caribbean islands has not been studied to date, we used both mitochondrial DNA and Y-chromosome markers to complete the characterization of the dynamics of admixture in the Guadeloupe archipelago.
Materials And Methods: We sequenced the mitochondrial hypervariable regions and genotyped mitochondrial and Y-chromosomal single nucleotide polymorphisms (SNPs) of 198 individuals from five localities of the Guadeloupe archipelago.
Objectives: The main aim of this work was to contribute to the knowledge of pre-Hispanic genetic variation and population structure among the South-central Andes Area by studying individuals from Quebrada de Humahuaca, North-western (NW) Argentina.
Materials And Methods: We analyzed 15 autosomal STRs in 19 individuals from several archaeological sites in Quebrada de Humahuaca, belonging to the Regional Developments Period (900-1430 AD). Compiling autosomal, mitochondrial, and Y-chromosome data, we evaluated population structure and differentiation among eight South-central Andean groups from the current territories of NW Argentina and Peru.
In Europe, the Middle Neolithic is characterized by an important diversification of cultures. In northeastern France, the appearance of the Michelsberg culture has been correlated with major cultural changes and interpreted as the result of the settlement of new groups originating from the Paris Basin. This cultural transition has been accompanied by the expansion of particular funerary practices involving inhumations within circular pits and individuals in "non-conventional" positions (deposited in the pits without any particular treatment).
View Article and Find Full Text PDFRecent ancient DNA studies on European Neolithic human populations have provided persuasive evidence of a major migration of farmers originating from the Aegean, accompanied by sporadic hunter-gatherer admixture into early Neolithic populations, but increasing toward the Late Neolithic. In this context, ancient mitochondrial DNA data collected from the Neolithic necropolis of Gurgy (Paris Basin, France), the largest mitochondrial DNA sample obtained from a single archeological site for the Early/Middle Neolithic period, indicate little differentiation from farmers associated to both the Danubian and Mediterranean Neolithic migration routes, as well as from Western European hunter-gatherers. To test whether this pattern of differentiation could arise in a single unstructured population by genetic drift alone, we used serial coalescent simulations.
View Article and Find Full Text PDFObjectives: The arrival of Neolithic farmers in Europe was the source of major cultural and genetic transitions. Neolithic settlers brought a new set of maternal lineages (mitochondrial DNA), recently well-characterized on the continental road, from the Balkans to West Germany (Rhine River). In the present study, the first mitochondrial DNA data from groups associated with this continental expansion wave located west of the Rhine River has been provided and their genetic affinities with contemporary groups have been discussed.
View Article and Find Full Text PDFAlmost all pre-Hispanic societies from Quebrada de Humahuaca (north-western Argentina) buried their defuncts in domestic areas, demonstrating the importance of death and its daily presence among the living. Presumably, the collective graves contained related individuals, a hypothesis that can be tested through the study of ancient DNA. This study analyzes autosomal and uniparental genetic markers in individuals from two archaeological sites in Quebrada de Humahuaca occupied during the Late Formative (1450-1050 BP) and Regional Developments I (1050-700 BP) periods.
View Article and Find Full Text PDFThe rapid Arab-Islamic conquest during the early Middle Ages led to major political and cultural changes in the Mediterranean world. Although the early medieval Muslim presence in the Iberian Peninsula is now well documented, based in the evaluation of archeological and historical sources, the Muslim expansion in the area north of the Pyrenees has only been documented so far through textual sources or rare archaeological data. Our study provides the first archaeo-anthropological testimony of the Muslim establishment in South of France through the multidisciplinary analysis of three graves excavated at Nimes.
View Article and Find Full Text PDFAn intense debate concerning the nature and mode of Neolithic transition in Europe has long received much attention. Recent publications of paleogenetic analyses focusing on ancient European farmers from Central Europe or the Iberian Peninsula have greatly contributed to this debate, providing arguments in favor of major migrations accompanying European Neolithization and highlighting noticeable genetic differentiation between farmers associated with two archaeologically defined migration routes: the Danube valley and the Mediterranean Sea. The aim of the present study was to fill a gap with the first paleogenetic data of Neolithic settlers from a region (France) where the two great currents came into both direct and indirect contact with each other.
View Article and Find Full Text PDFThis palaeogenetic study focused on the analysis of a late prehispanic Argentinean group from the Humahuaca valley, with the main aim of reconstructing its (micro)evolutionary history. The Humahuaca valley, a natural passageway from the eastern plains to the highlands, was the living environment of Andean societies whose cultural but especially biological diversity is still poorly understood. We analyzed the DNA extracted from 39 individuals who populated this upper valley during the Regional Development period (RDP) (between the 11th and 15th centuries CE), to determine their maternal and paternal genetic ancestry.
View Article and Find Full Text PDFObjectives: The history of European populations is characterised by numerous migrations or demographic events that are likely to have had major impacts on the European gene pool patterns. This paper will focus on how ancient DNA (aDNA) data contribute to our understanding of past population dynamics in Europe.
Methods: Technological challenges of the palaeogenetic approach will be discussed.
Important developments in the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) technique have generated new perspectives regarding SNP genotyping, which are particularly promising for ancient population-based studies. The main aim of the present study was to investigate the application of a MALDI-TOF MS-based SNP genotyping technique, called iPLEX(®) Gold, to analyze Amerindian ancient DNA samples. The first objective was to test the sensitivity of the method, which is recommended for DNA quantities between 10 and 5 ng, for ancient biological samples containing DNA molecules that were degraded and present in minute quantities.
View Article and Find Full Text PDFAncient DNA recovered from 21 individuals excavated from burial sites in the Pampa Grande (PG) region (Salta province) of North-Western Argentina (NWA) was analyzed using various genetic markers (mitochondrial DNA, autosomal STRs, and Y chromosomal STRs). The results were compared to ancient and modern DNA from various populations in the Andean and North Argentinean regions, with the aim of establishing their relationships with PG. The mitochondrial haplogroup frequencies described (11% A, 47% B, and 42% D) presented values comparable to those found for the ancient Andean populations from Peru and San Pedro de Atacama.
View Article and Find Full Text PDF