Publications by authors named "Fanny Lundmark"

Article Synopsis
  • The study explored the use of a glycine-leucine-glycine-lysine (GLGK) linker to reduce kidney uptake of radiolabeled affinity proteins for targeted imaging and therapy.
  • Despite the incorporation of this cleavable linker in HER2-targeting ADAPT6, the expected reduction in renal retention was not achieved.
  • The non-residualizing labeling strategy with [I]I-HPEM showed significantly lower kidney uptake compared to other constructs, suggesting that new design strategies are necessary for improving kidney retention in future therapies.
View Article and Find Full Text PDF

Introduction: Prostate specific membrane antigen (PSMA), highly expressed in metastatic castration-resistant prostate cancer (mCRPC), is an established therapeutic target. Theranostic PSMA-targeting agents are widely used in patient management and has shown improved outcomes for mCRPC patients. Earlier, we optimized a urea-based probe for radionuclide visualization of PSMA-expression using computer modeling.

View Article and Find Full Text PDF

Gastrin-releasing peptide receptors (GRPRs) are overexpressed in the majority of primary prostate tumors and in prostatic lymph node and bone metastases. Several GRPR antagonists were developed for SPECT and PET imaging of prostate cancer. We previously reported a preclinical evaluation of the GRPR antagonist [Tc]Tc-maSSS-PEG-RM26 (based on [D-Phe, Sta, Leu-NH]BBN(6-14)) which bound to GRPR with high affinity and had a favorable biodistribution profile in tumor-bearing animal models.

View Article and Find Full Text PDF

The development of radioligands targeting prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) has shown promising results for the imaging and therapy of prostate cancer. However, studies have shown that tumors and metastases can express such targets heterogeneously. To overcome this issue and to improve protein binding, radioligands with the ability to bind both PSMA and GRPR have been developed.

View Article and Find Full Text PDF

Prostate-specific membrane antigen (PSMA) is overexpressed in the majority of prostate cancer cells and is considered to be an important target for the molecular imaging and therapy of prostate cancer. Herein, we present the design, synthesis, and evaluation of 11 PSMA-binding radioligands with modified linker structures, focusing on the relationship between molecular structure and targeting properties. The linker design was based on 2-naphthyl-L-alanine-tranexamic acid, the linker structure of PSMA-617.

View Article and Find Full Text PDF

Prostate-specific membrane antigen (PSMA) and gastrin-releasing peptide receptor (GRPR) are promising targets for molecular imaging of prostate cancer (PCa) lesions. Due to the heterogenic overexpression of PSMA and GRPR in PCa, a heterodimeric radiotracer with the ability to bind to both targets could be beneficial. Recently, our group reported the novel heterodimer BQ7800 consisting of a urea-based PSMA inhibitor, the peptide-based GRPR antagonist RM26 and NOTA chelator.

View Article and Find Full Text PDF

Radiolabelled antagonistic bombesin analogues are successfully used for targeting of gastrin-releasing peptide receptors (GRPR) that are overexpressed in prostate cancer. Internalization of antagonistic bombesin analogues is slow. We hypothesized that the use of a non-residualizing radioiodine label might not affect the tumour uptake but would reduce the retention in normal organs, where radiopharmaceutical would be internalized.

View Article and Find Full Text PDF