Publications by authors named "Fanjian Li"

Acute lung injury (ALI) is the most frequently developed complication in patients with severe traumatic brain injury (TBI), but its underlying mechanism remains poorly understood. Here, we report results from a study designed to investigate the mechanistic link between TBI and ALI in mouse models, in vitro experiments, and a patient study, specifically focusing on the role of extracellular mitochondria (exMt). We detected high levels of exMt in the alveolar lavage fluid of patients with TBI.

View Article and Find Full Text PDF

Neutrophils are the first responders among peripheral immune cells to infiltrate the central nervous system following a traumatic brain injury (TBI), triggering neuroinflammation that can exacerbate secondary tissue damage. The precise molecular controls that dictate the inflammatory behavior of neutrophils post-TBI, however, remain largely elusive. Our comprehensive analysis of the molecular landscape surrounding the trauma in TBI mice has revealed a significant alteration in the abundance of β2 integrin (ITGB2), predominantly expressed by neutrophils and closely associated with immune responses.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) can induce systemic coagulopathy and inflammation, thereby increasing the risk of mortality and disability. However, the mechanism causing systemic coagulopathy and inflammation following TBI remains unclear. In prior research, we discovered that brain-derived extracellular vesicles (BDEVs), originating from the injured brain, can activate the coagulation cascade and inflammatory cells.

View Article and Find Full Text PDF

Gliomas are highly heterogeneous brain tumours that are resistant to therapies. The molecular signatures of gliomas play a high-ranking role in tumour prognosis and treatment. In addition, patients with gliomas with a mesenchymal phenotype manifest overpowering immunosuppression and sophisticated resistance to treatment.

View Article and Find Full Text PDF

Intestinal injury caused by traumatic brain injury (TBI) seriously affects patient prognosis; however, the underlying mechanisms are unknown. Recent studies have demonstrated that ferritinophagy-mediated ferroptosis is involved in several intestinal disorders. However, uncertainty persists regarding the role of ferritinophagy-mediated ferroptosis in the intestinal damage caused by TBI.

View Article and Find Full Text PDF

Previous studies have proved that cardiac dysfunction and myocardial damage can be found in TBI patients, but the underlying mechanisms of myocardial damage induced by TBI can't be illustrated. We want to investigate the function of ferroptosis in myocardial damage after TBI and determine if inhibiting iron overload might lessen myocardial injury after TBI due to the involvement of iron overload in the process of ferroptosis and inflammation. We detect the expression of ferroptosis-related proteins in cardiac tissue at different time points after TBI, indicating that TBI can cause ferroptosis in the heart in vivo.

View Article and Find Full Text PDF
Article Synopsis
  • Traumatic brain injury (TBI) can cause damage not only to the brain but also to systemic organs, increasing the risk of death and disability.
  • Brain-derived extracellular vesicles (BDEVs), released from the injured brain, were found to induce harm to organs like the heart, lungs, liver, and kidneys by causing cell damage and dysfunction.
  • The study suggests that targeting and removing BDEVs from circulation may alleviate this secondary multi-organ damage caused by TBI.
View Article and Find Full Text PDF
Article Synopsis
  • Endothelial dysfunction plays a significant role in the effects of traumatic brain injury (TBI), with extracellular vesicles (EVs) from injured brains disrupting blood vessel barriers and increasing leakage.
  • The study found that high levels of high mobility group box 1 (HMGB1) on plasma EVs from TBI patients correlated with injury severity and contributed to endothelial dysfunction through specific signaling pathways.
  • The presence of von Willebrand factor (VWF) on these EVs suggests a mechanism that links them to endothelial cells, highlighting potential therapeutic targets and biomarkers for TBI.
View Article and Find Full Text PDF

Traumatic brain injury (TBI) is an important reason of neurological damage and has high morbidity and mortality rates. The secondary damage caused by TBI leads to a poor clinical prognosis. According to the literature, TBI leads to ferrous iron aggregation at the site of trauma and may be a key factor in secondary injury.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a major cause of neurological disorder or death, with a heavy burden on individuals and families. While sustained primary insult leads to damage, subsequent secondary events are considered key pathophysiological characteristics post-TBI, and the inflammatory response is a prominent contributor to the secondary cascade. Neuroinflammation is a multifaceted physiological response and exerts both positive and negative effects on TBI.

View Article and Find Full Text PDF

Traumatic brain injury often causes poor outcomes and has few established treatments. Neuroinflammation and ferroptosis hinder therapeutic progress in this domain. Annexin A5 (A5) has anticoagulant, anti-apoptotic and anti-inflammatory bioactivities.

View Article and Find Full Text PDF

Brain induced extracellular vesicle (BDEV) elevates after traumatic brain injury (TBI) and contributes to secondary brain injury. However, the role of BDEV in TBI remains unclear. In this study, we determined the mechanisms of BDEV in brain injury and explored whether neuroprotective drug BKca channel opener NS1619 may attenuate BDEV-induced brain injury.

View Article and Find Full Text PDF

Background And Purpose: Neuroinflammation has been shown to play a critical role in secondary craniocerebral injury, leading to poor outcomes for TBI patients. Abrocitinib, a Janus kinase1 (JAK1) selective inhibitor approved to treat atopic dermatitis (AD) by the Food and Drug Administration (FDA), possesses a novel anti-inflammatory effect. In this study, we investigated whether abrocitinib could ameliorate neuroinflammation and exert a neuroprotective effect in traumatic brain injury (TBI) models.

View Article and Find Full Text PDF

Annexin A5 (ANXA5) exhibited potent antithrombotic, antiapoptotic, and anti-inflammatory properties in a previous study. The role of ANXA5 in traumatic brain injury (TBI)-induced intestinal injury is not fully known. Recombinant human ANXA5 (50 µg/kg) or vehicle (PBS) was administered to mice via the tail vein 30 min after TBI.

View Article and Find Full Text PDF

Traumatic brain injury (TBI)-induced neuroinflammation is closely associated with poor outcomes and high mortality in affected patients, with unmet needs for effective clinical interventions. A series of causal and disseminating factors have been identified to cause TBI-induced neuroinflammation. Among these are cellular microvesicles released from injured cerebral cells, endothelial cells, and platelets.

View Article and Find Full Text PDF
Article Synopsis
  • ACT001 demonstrates strong antitumor and anti-fibrosis effects but its role in acute lung injury (ALI) has been unclear until this study.
  • The research showed ACT001 effectively reduced lung damage and inflammatory macrophage infiltration in an ALI mouse model induced by LPS.
  • Key findings indicate that ACT001 targets proteins IKKβ and STAT1, inhibiting inflammation by suppressing NF-κB and STAT1 pathways, offering potential for drug development in ALI/ARDS treatment.
View Article and Find Full Text PDF

Neuroinflammation is an important mediator of secondary injury pathogenesis that exerts dual beneficial and detrimental effects on pathophysiology of the central nervous system (CNS) after traumatic brain injury (TBI). Fluvoxamine is a serotonin selective reuptake inhibitor (SSRI) and has been reported to have the anti-inflammatory properties. However, the mechanisms and therapeutic effects of fluvoxamine in neuroinflammation after TBI have not be defined.

View Article and Find Full Text PDF

Objective: The authors aimed to identify factors that influence neurological function after treatment in order to facilitate clinician decision-making during treatment of spinal cavernous malformation (SCM) and about when and whether to perform surgical intervention.

Methods: The authors performed a retrospective observational cohort study of patients with SCM who were treated at their institution between January 2004 and December 2019. Multiple logistic and Cox regression analyses were performed to determine the prognostic predictors of clinical outcome.

View Article and Find Full Text PDF

Acute lung injury (ALI), a common complication after traumatic brain injury (TBI), can evolve into acute respiratory distress syndrome (ARDS) and has a mortality rate of 30%-40%. Secondary ALI after TBI exhibits the following typical pathological features: infiltration of neutrophils into the alveolar and interstitial space, alveolar septal thickening, alveolar edema, and hemorrhage. Extracellular vesicles (EVs) were recently identified as key mediators in TBI-induced ALI.

View Article and Find Full Text PDF

Background: Cerebral ischemia-reperfusion (I/R) injury is a major cause of early complications and unfavorable outcomes after endovascular thrombectomy (EVT) therapy in patients with acute ischemic stroke (AIS). Recent studies indicate that modulating microglia/macrophage polarization and subsequent inflammatory response may be a potential adjunct therapy to recanalization. Annexin A1 (ANXA1) exerts potent anti-inflammatory and pro-resolving properties in models of cerebral I/R injury.

View Article and Find Full Text PDF

Pathophysiological mechanisms of chronic subdural hematoma (CSDH) involve localized inflammation, angiogenesis, and dysregulated coagulation and fibrinolysis. The scarcity of reproducible and clinically relevant animal models of CSDH hinders further understanding the underlying pathophysiology and improving new treatment strategies. Here, we developed a novel rat model of CSDH using extracellular matrices (Matrigel) and brain microvascular endothelial cell line (bEnd.

View Article and Find Full Text PDF

Coagulopathy often develops soon after acute traumatic brain injury and its cause remains poorly understood. We have shown that injured brains release cellular microvesicles that disrupt the endothelial barrier and induce consumptive coagulopathy. Morphologically intact extracellular mitochondria accounted for 55.

View Article and Find Full Text PDF

Semaphorin 3A (SEMA3A) is a member of the Semaphorins family, a class of membrane-associated protein that participates in the construction of nerve networks. SEMA3A has been reported to affect vascular permeability previously, but its influence in traumatic brain injury (TBI) is still unknown. To investigate the effects of SEMA3A, we used a mouse TBI model with a controlled cortical impact (CCI) device and a blood-brain barrier (BBB) injury model with oxygen-glucose deprivation (OGD).

View Article and Find Full Text PDF

Collagen is a major component of the subendothelial matrix and participates in bleeding arrest by activating and aggregating platelets at the site of vascular injury. The most common type I collagen exists in both soluble and fibrillar forms, but structural exchangeability between the two forms is currently unknown. Using atomic force microscopy, we show that type I collagen switches between soluble and fibrillar forms in a pH-dependent and ion-independent manner.

View Article and Find Full Text PDF

Microparticles are cell fragments derived from damaged cells that are able to present an antigen from the parent cells to other cells to activate intracellular signaling pathways. Microparticles are closely related to the inflammatory response. Brain-derived microparticles (BDMPs) play an important role in brain injury.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionsdnuccah398c6r120v0qiq2pctd1e70d): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once