A permanently available molecular-beam injection setup for controlled molecules (COMO) was installed and commissioned at the small quantum systems (SQS) instrument at the European x-ray free-electron laser (EuXFEL). A b-type electrostatic deflector allows for pure state-, size-, and isomer-selected samples of polar molecules and clusters. The source provides a rotationally cold (T ≈ 1 K) and dense (ρ ≈ 108 cm-3) molecular beam with pulse durations up to 100 µs generated by a new version of the Even-Lavie valve.
View Article and Find Full Text PDFA 1D imaging soft X-ray spectrometer installed on the small quantum systems (SQS) scientific instrument of the European XFEL is described. It uses movable cylindrical constant-line-spacing gratings in the Rowland configuration for energy dispersion in the vertical plane, and Wolter optics for simultaneous 1D imaging of the source in the horizontal plane. The soft X-ray fluorescence spectro-imaging capability will be exploited in pump-probe measurements and in investigations of propagation effects and other nonlinear phenomena.
View Article and Find Full Text PDFExcited double-core-hole states of isolated water molecules resulting from the sequential absorption of two x-ray photons have been investigated. These states are formed through an alternative pathway, where the initial step of core ionization is accompanied by the shake-up of a valence electron, leading to the same final states as in the core-ionization followed by core-excitation pathway. The capability of the x-ray free-electron laser to deliver very intense, very short, and tunable light pulses is fully exploited to identify the two different pathways.
View Article and Find Full Text PDFSuperfluid helium nanodroplets are an ideal environment for the formation of metastable, self-organized dopant nanostructures. However, the presence of vortices often hinders their formation. Here, we demonstrate the generation of vortex-free helium nanodroplets and explore the size range in which they can be produced.
View Article and Find Full Text PDFTransmission measurements of the soft X-ray beamline to the Small Quantum Systems (SQS) scientific instrument at the SASE3 undulator of European XFEL are presented. Measurements are reported for a wide range of photon energies (650 eV to 2400 eV), using X-ray gas monitors as well as a bolometric radiometer. The results are in good agreement with simulations for the beam transport and show a transmission of up to 80% over the whole photon energy range.
View Article and Find Full Text PDFThe Small Quantum Systems instrument is one of the six operating instruments of the European XFEL, dedicated to the atomic, molecular and cluster physics communities. The instrument started its user operation at the end of 2018 after a commissioning phase. The design and characterization of the beam transport system are described here.
View Article and Find Full Text PDFThe photochemically induced ring-opening isomerization reaction of 1,3-cyclohexadiene to 1,3,5-hexatriene is a textbook example of a pericyclic reaction and has been amply investigated with advanced spectroscopic techniques. The main open question has been the identification of the single reactive state which drives the process. The generally accepted description of the isomerization pathway starts with a valence excitation to the lowest lying bright state, followed by a passage through a conical intersection to the lowest lying doubly excited state, and finally a branching between either the return to the ground state of the cyclic molecule or the actual ring-opening reaction leading to the open-chain isomer.
View Article and Find Full Text PDFDuring the last decade, X-ray free-electron lasers (XFELs) have enabled the study of light-matter interaction under extreme conditions. Atoms which are subject to XFEL radiation are charged by a complex interplay of (several subsequent) photoionization events and electronic decay processes within a few femtoseconds. The interaction with molecules is even more intriguing, since intricate nuclear dynamics occur as the molecules start to dissociate during the charge-up process.
View Article and Find Full Text PDFA set of electron time-of-flight spectrometers for high-resolution angle-resolved spectroscopy was developed for the Small Quantum Systems (SQS) instrument at the SASE3 soft X-ray branch of the European XFEL. The resolving power of this spectrometer design is demonstrated to exceed 10 000 (E/ΔE), using the well known Ne 1s3p resonant Auger spectrum measured at a photon energy of 867.11 eV at a third-generation synchrotron radiation source.
View Article and Find Full Text PDFHere, we report on the nonlinear ionization of argon atoms in the short wavelength regime using ultraintense x rays from the European XFEL. After sequential multiphoton ionization, high charge states are obtained. For photon energies that are insufficient to directly ionize a 1s electron, a different mechanism is required to obtain ionization to Ar^{17+}.
View Article and Find Full Text PDFThis contribution presents the initial characterization of the pump-probe performance at the Small Quantum Systems (SQS) instrument of the European X-ray Free Electron Laser. It is demonstrated that time-resolved experiments can be performed by measuring the X-ray/optical cross-correlation exploiting the laser-assisted Auger decay in neon. Applying time-of-arrival corrections based on simultaneous spectral encoding measurements allow us to significantly improve the temporal resolution of this experiment.
View Article and Find Full Text PDFWe report on a multiparticle coincidence experiment performed at the European X-ray Free-Electron Laser at the Small Quantum Systems instrument using a COLTRIMS reaction microscope. By measuring two ions and two electrons in coincidence, we investigate double core-hole generation in O_{2} molecules in the gas phase. Single-site and two-site double core holes have been identified and their molecular-frame electron angular distributions have been obtained for a breakup of the oxygen molecule into two doubly charged ions.
View Article and Find Full Text PDFAddressing the ultrafast coherent evolution of electronic wave functions has long been a goal of nonlinear x-ray physics. A first step toward this goal is the investigation of stimulated x-ray Raman scattering (SXRS) using intense pulses from an x-ray free-electron laser. Earlier SXRS experiments relied on signal amplification during pulse propagation through dense resonant media.
View Article and Find Full Text PDFShort wavelength free-electron lasers (FELs), providing pulses of ultrahigh photon intensity, have revolutionized spectroscopy on ionic targets. Their exceptional photon flux enables multiple photon absorptions within a single femtosecond pulse, which in turn allows for deep insights into the photoionization process itself as well as into evolving ionic states of a target. Here we employ ultraintense pulses from the FEL FERMI to spectroscopically investigate the sequential emission of electrons from gaseous, atomic argon in the neutral as well as the ionic ground state.
View Article and Find Full Text PDFIonization of the I 3d, 4s, and 4p orbitals in methyl iodide (CHI) has been studied by using synchrotron radiation to measure the total ion yield and by recording photoelectron spectra with linearly polarized radiation in two polarization orientations. The complete photoelectron spectrum of CHI has been recorded at several photon energies, and bands due to the C 1s, I 3d, 4s, 4p, and 4d atomic-like orbitals, as well as the molecular orbitals, have been observed and assigned. In the vicinity of the I 3d and 3d ionization thresholds at 626.
View Article and Find Full Text PDFAuger electron spectra following excitation or ionization of the I 3d level in CHI have been recorded with horizontally or vertically plane polarized synchrotron radiation. These spectra have enabled the Auger electron angular distributions, as characterized by the parameter, to be determined. The I 3d photoionization partial cross section of CHI has been calculated with the continuum multiple scattering approach, and the results show that in the photon energy range over which Auger spectra were measured, the I 3d cross section exhibits an atomic-like behavior and is dominated by transitions into the f continuum channel.
View Article and Find Full Text PDFA transmission polarizer for producing elliptically polarized soft X-ray radiation from linearly polarized light is presented. The setup is intended for use at synchrotron and free-electron laser beamlines that do not directly offer circularly polarized light for, e.g.
View Article and Find Full Text PDFA photoelectron spectrum of H(2)O has been recorded at a resolution of 2 meV under Doppler-free conditions. Complex rotational structures appear in the individual vibrational states of the electronic X̃(+ 2)B(1) and Ã(+ 2)A(2) states in H(2)O(+). The rotational structures are analyzed and well reproduced using a spectator orbital model developed for rotationally resolved photoelectron spectroscopy.
View Article and Find Full Text PDFWe report results of measurements and of Hartree-Fock level calculations of molecular-frame photoelectron angular distributions (MFPADs) for C 1s photoemission from CO2. The agreement between the measured and calculated MFPADs is on average reasonable. The measured MFPADs display a weak but definite asymmetry with respect to the O+ and CO+ fragment ions at certain energies, providing evidence for an overlap of gerade and ungerade final ionic states giving rise to a partial breakdown of the two-step model of core-level photoionization and its subsequent Auger decay.
View Article and Find Full Text PDFThe molecular-frame photoelectron angular distribution (MFPAD) of the satellite accompanying the C 1s photoline of the CO2 molecule has been measured at the C 1s(2sigmag)-->4sigmau* shape resonance, using electron-ion multicoincidence momentum spectroscopy. The observed MFPAD indicates that the conjugate satellite is excited by internal inelastic scattering. In this scenario, a photoelectron is ejected from the C 1s(2sigmag) orbital along the molecular axis and collides with an O lone-pair electron in the highest occupied molecular orbital 1pig.
View Article and Find Full Text PDFWe report on an experimental and theoretical investigation of x-ray absorption and resonant Auger electron spectra of gas phase O(2) recorded in the vicinity of the O 1s-->sigma(*) excitation region. Our investigation shows that core excitation takes place in a region with multiple crossings of potential energy curves of the excited states. We find a complete breakdown of the diabatic picture for this part of the x-ray absorption spectrum, which allows us to assign an hitherto unexplained fine structure in this spectral region.
View Article and Find Full Text PDFThe valence character of O 1s-->Rydberg excited O2 is investigated by means of participator Auger decay spectroscopy, performed at selected photon energies across the K-shell resonance region, and by means of partial ion yield x-ray absorption spectroscopy. For several of the excitation energies studied, the authors find substantial sigma*(4Sigmau-, 2Sigmau-) valence character being mixed with nssigma and npsigma (4Sigmau-, 2Sigmau-) Rydberg states. An experimental indication of a coupling between the channels associated with quartet and doublet ion cores is considered and discussed.
View Article and Find Full Text PDFThe photoelectron shake-up satellite spectra that accompany the C1s and O1s main lines of carbon monoxide have been studied by a combination of high-resolution x-ray photoelectron spectroscopy and accurate ab initio calculations. The symmetry-adapted cluster-expansion configuration-interaction general-R method satisfactorily reproduces the satellite spectra over a wide energy region, and the quantitative assignments are proposed for the 16 and 12 satellite bands for C1s and O1s spectra, respectively. Satellite peaks above the pi(-1)pi(*) transitions are mainly assigned to the Rydberg excitations accompanying the inner-shell ionization.
View Article and Find Full Text PDFVibrationally resolved spectra have been obtained for the lowest-lying cationic states X (2)B(1), A (2)A(1), and B (2)B(2) of the water molecule reached after participator resonant Auger decay of core-excited states. The angular distribution has been measured of the first four vibrational components of the X state in the photon energy regions including the O 1s-->4a(1) and the O 1s-->2b(2) core excitations, and for different portions of the vibrational envelope of the B state in the photon energy region including the O 1s-->2b(2) core excitation. For the X state, a large relative spread in beta values of the different vibrational components is observed across both resonances.
View Article and Find Full Text PDFFragmentation of the SF6 molecule upon F 1s excitation has been studied by resonant photoemission. The F atomiclike Auger line exhibits the characteristic Doppler profile that depends on the direction of the photoelectron momentum relative to the polarization vector of the radiation as well as on the photon energy. The measured Doppler profiles are analyzed by the model simulation that takes account of the anisotropy of the Auger emission in the molecular frame.
View Article and Find Full Text PDF