Spinal cord ependymal cells display neural stem cell properties in vitro and generate scar-forming astrocytes and remyelinating oligodendrocytes after injury. We report that ependymal cells are functionally heterogeneous and identify a small subpopulation (8% of ependymal cells and 0.1% of all cells in a spinal cord segment), which we denote ependymal A (EpA) cells, that accounts for the in vitro stem cell potential in the adult spinal cord.
View Article and Find Full Text PDFThe ventricular epithelium of the adult forebrain is a heterogeneous cell population that is a source of both quiescent and activated neural stem cells (qNSCs and aNSCs, respectively). We genetically targeted a subset of ventricle-contacting, glial fibrillary acidic protein (GFAP)-expressing cells, to study their involvement in qNSC/aNSC-mediated adult neurogenesis. Ventricle-contacting GFAP cells were lineage-traced beginning in early adulthood using adult brain electroporation and produced small numbers of olfactory bulb neuroblasts until at least 21 mo of age.
View Article and Find Full Text PDFThe development of the cerebral cortex depends on numerous parameters, including extracellular cues and microenvironmental factors that also affect gene expression. C-Terminal Binding Proteins (CtBPs) 1 and 2 are transcriptional co-repressors which have been shown to be critically involved in embryonic development. CtBPs are oxygen sensing molecules, and we have previously demonstrated an important role for CtBP1 in integrating oxygen levels and BMP-signaling to influence neural progenitor fate choice.
View Article and Find Full Text PDFDevelopment of the spinal cord requires dynamic and tightly controlled expression of numerous transcription factors. Forkhead Box protein J1 (FoxJ1) is a transcription factor involved in ciliogenesis and is specifically expressed in ependymal cells (ECs) in the adult central nervous system. However, using FoxJ1 fate-mapping mouse lines, we observed that FoxJ1 is also transiently expressed by the progenitors of other neural subtypes during development.
View Article and Find Full Text PDFStem cells have a high therapeutic potential for the treatment of spinal cord injury (SCI). We have shown previously that endogenous stem cell potential is confined to ependymal cells in the adult spinal cord which could be targeted for non-invasive SCI therapy. However, ependymal cells are an understudied cell population.
View Article and Find Full Text PDFA single asymmetric division by an adult neural stem cell (NSC) ultimately generates dozens of differentiated progeny, a feat made possible by the proliferative expansion of transit-amplifying progenitor cells (TAPs). Although NSC activation and TAP expansion is determined by pro- and anti-proliferative signals found within the niche, remarkably little is known about how these cells integrate simultaneous conflicting signals. We investigated this question focusing on the subventricular zone (SVZ) niche of the adult murine forebrain.
View Article and Find Full Text PDFLipid metabolism is fundamental for brain development and function, but its roles in normal and pathological neural stem cell (NSC) regulation remain largely unexplored. Here, we uncover a fatty acid-mediated mechanism suppressing endogenous NSC activity in Alzheimer's disease (AD). We found that postmortem AD brains and triple-transgenic Alzheimer's disease (3xTg-AD) mice accumulate neutral lipids within ependymal cells, the main support cell of the forebrain NSC niche.
View Article and Find Full Text PDFStroke and spinal cord injury (SCI) are among the most frequent causes of central nervous system (CNS) dysfunction, affecting millions of people worldwide each year. The personal and financial costs for affected individuals, their families, and the broader communities are enormous. Although the mammalian CNS exhibits little spontaneous regeneration and self-repair, recent discoveries have revealed that subpopulations of glial cells in the adult forebrain subventricular zone and the spinal cord ependymal zone possess neural stem cell properties.
View Article and Find Full Text PDFNeural stem cell (NSC) state and fate depend on spatially and temporally synchronized transcriptional and epigenetic regulation of the expression of extrinsic signaling factors and intrinsic cell-specific genes, but the functional roles for chromatin-modifying enzymes in neural differentiation remain poorly understood. Here we show that the histone demethylases KDM4A (JMJD2A) and KDM4C (JMJD2C) are essential for proper differentiation of NSCs in vitro and in vivo. KDM4A/C were required for neuronal differentiation, survival and expression of the neurotrophic signaling factor BDNF in association with promoter H3K9 demethylation and RNA polymerase II recruitment.
View Article and Find Full Text PDFThe principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells.
View Article and Find Full Text PDFEpendymal cells in the lateral ventricular wall are considered to be post-mitotic but can give rise to neuroblasts and astrocytes after stroke in adult mice due to insult-induced suppression of Notch signaling. The transcription factor FoxJ1, which has been used to characterize mouse ependymal cells, is also expressed by a subset of astrocytes. Cells expressing FoxJ1, which drives the expression of motile cilia, contribute to early postnatal neurogenesis in mouse olfactory bulb.
View Article and Find Full Text PDFAdult forebrain neurogenesis is dynamically regulated. Multiple families of niche-derived cues have been implicated in this regulation, but the precise roles of key intracellular signaling pathways remain vaguely defined. Here, we show that mammalian target of rapamycin (mTOR) signaling is pivotal in determining proliferation versus quiescence in the adult forebrain neural stem cell (NSC) niche.
View Article and Find Full Text PDFSeveral distinct cell types in the adult central nervous system have been suggested to act as stem or progenitor cells generating new cells under physiological or pathological conditions. We have assessed the origin of new cells in the adult mouse spinal cord by genetic fate mapping. Oligodendrocyte progenitors self-renew, give rise to new mature oligodendrocytes, and constitute the dominating proliferating cell population in the intact adult spinal cord.
View Article and Find Full Text PDFIt has been difficult to establish whether we are limited to the heart muscle cells we are born with or if cardiomyocytes are generated also later in life. We have taken advantage of the integration of carbon-14, generated by nuclear bomb tests during the Cold War, into DNA to establish the age of cardiomyocytes in humans. We report that cardiomyocytes renew, with a gradual decrease from 1% turning over annually at the age of 25 to 0.
View Article and Find Full Text PDFNeurons are continuously generated from stem cells in discrete regions in the adult mammalian brain. We found that ependymal cells lining the lateral ventricles were quiescent and did not contribute to adult neurogenesis under normal conditions in mice but instead gave rise to neuroblasts and astrocytes in response to stroke. Ependymal cell quiescence was actively maintained by canonical Notch signaling.
View Article and Find Full Text PDFSpinal cord injury often results in permanent functional impairment. Neural stem cells present in the adult spinal cord can be expanded in vitro and improve recovery when transplanted to the injured spinal cord, demonstrating the presence of cells that can promote regeneration but that normally fail to do so efficiently. Using genetic fate mapping, we show that close to all in vitro neural stem cell potential in the adult spinal cord resides within the population of ependymal cells lining the central canal.
View Article and Find Full Text PDFSpinal cord injury typically results in permanent disability. Many studies have indicated that transplantation of several different types of stem cells promotes functional recovery in animal models of spinal cord injury. A conceptually different approach to utilize stem cells for regenerative therapies may be recruitment of endogenous neural stem cells resident in the adult spinal cord.
View Article and Find Full Text PDFTargeted ectopic expression of genes in the adult brain is an invaluable approach for studying many biological processes. This can be accomplished by generating transgenic mice or by virally mediated gene transfer, but these methods are costly and labor intensive. We devised a rapid strategy that allows localized in vivo transfection of plasmid DNA within the adult neurogenic niches without detectable brain damage.
View Article and Find Full Text PDFNeurons are generated from stem or progenitor cells in discrete areas in the adult brain. The exact temporal and spatial distribution of adult neurogenesis has, however, been difficult to establish because of inherent limitations with the currently used techniques, and there are numerous controversies with regard to whether neurons are generated in specific regions or in response to insults. We describe here the generation of transgenic mice that express conditionally active Cre recombinase under the control of a nestin enhancer element.
View Article and Find Full Text PDFMultipotent precursors similar to stem cells of the embryonic neural crest (NC) have been identified in several postnatal tissues, and are potentially useful for research and therapeutic purposes. However, their neurogenic potential, including their ability to produce electrophysiologically active neurons, is largely unexplored. We investigated this issue with regard to skin-derived precursors (SKPs), multipotent NC-related precursors isolated from the dermis of skin.
View Article and Find Full Text PDFThe p53 family member p63 is required for nonneural development, but has no known role in the nervous system. Here, we define an essential proapoptotic role for p63 during naturally occurring neuronal death. Sympathetic neurons express full-length TAp63 during the developmental death period, and TAp63 levels increase following NGF withdrawal.
View Article and Find Full Text PDFThe intracellular mechanisms that bias mammalian neural precursors to generate neurons versus glial cells are not well understood. We demonstrated previously that the growth factor-regulated mitogen-activated protein kinase kinase (MEK) and its downstream target, the CCAAT/enhancer-binding protein (C/EBP) family of transcription factors, are essential for neurogenesis in cultured cortical precursor cells (Ménard et al., 2002).
View Article and Find Full Text PDFPrecursor cells of the embryonic cortex sequentially generate neurons and then glial cells, but the mechanisms regulating this neurogenic-to-gliogenic transition are unclear. Using cortical precursor cultures, which temporally mimic this in vivo differentiation pattern, we demonstrate that cortical neurons synthesize and secrete the neurotrophic cytokine cardiotrophin-1, which activates the gp130-JAK-STAT pathway and is essential for the timed genesis of astrocytes in vitro. Our data indicate that a similar phenomenon also occurs in vivo.
View Article and Find Full Text PDFNeurogenesis requires factors that regulate the decision of dividing progenitors to leave the cell cycle and activate the neuronal differentiation program. It is shown here that the murine runt-related gene Runx1 is expressed in proliferating cells on the basal side of the olfactory epithelium. These include both Mash1+ olfactory receptor neuron (ORN) progenitors and NeuroD+ ORN precursors.
View Article and Find Full Text PDF