Publications by authors named "Fangying Sun"

Endometrial receptivity relies on the functional and morphological change of endometrium stromal cells (EnSCs) and epithelial cells in the secretory phase. Decidualization of ESCs and transitions in endometrium epithelial cells are crucial for successful uterine implantation and maintaining pregnancy. Accumulated data have demonstrated that decidualization is tightly coordinated by lipid metabolism.

View Article and Find Full Text PDF

Background: Ovarian cancer is insidious and usually detected in advanced stages of the disease. As the ovaries are pelvic organs, changes in their pelvic fluid metabolites may be associated with ovarian cancer.

Methods: Metabolomic changes in the pelvic fluid were detected using liquid chromatography-tandem mass spectrometry (LC-MS/MS) in patients with ovarian cancer, ovarian cysts and uterine fibroids.

View Article and Find Full Text PDF

Ovarian cancer develops insidiously and is frequently diagnosed at advanced stages. Screening for ovarian cancer is an effective strategy for reducing mortality. This study aimed to investigate the molecular mechanisms underlying the development of ovarian cancer and identify novel tumor biomarkers for the diagnosis and prognosis of ovarian cancer.

View Article and Find Full Text PDF

Background: Ovarian cancer (OC) is a severe gynecological malignancy with significant diagnostic and therapeutic challenges. The discovery of reliable cancer biomarkers can be used to adjust diagnosis and improve patient care. However, serous OC lacks effective biomarkers.

View Article and Find Full Text PDF

Introduction: High-grade serous ovarian cancer (HGSOC) is the most common histological subtype of ovarian cancer, and is associated with high mortality rates.

Methods: In this study, we analyzed specific cell subpopulations and compared different gene functions between healthy ovarian and ovarian cancer cells using single-cell RNA sequencing (ScRNA-seq). We delved deeper into the differences between healthy ovarian and ovarian cancer cells at different levels, and performed specific analysis on endothelial cells.

View Article and Find Full Text PDF

Metal aerogels represent an emerging type of functional porous materials with promising applications in diverse fields, but the fabrication of metal aerogels with specific structure and property still remains a challenge. Here, the authors report a new approach to fabricate metal aerogels by using ultrasmall metal nanoclusters (NCs) as functional building blocks. By taking D-penicillamine-stabilized gold NCs (AuNCs) with a diameter of 1.

View Article and Find Full Text PDF

Gold nanoclusters (AuNCs) represent an emerging type of engineered nanomaterials with intrinsic enzymatic activity for both chemical and biological applications, but the catalytic activity of most reported AuNCs remains rather limited. Herein, we report a new, efficient strategy of promoting the peroxidase-mimic activity of AuNCs by tailoring their catalytic interfaces via small molecule-mediated weak interactions. Inspired by the presence of imidazole structures in many biocatalytic centers, we screened a series of imidazole-containing small molecules to evaluate their impact on the enzymatic activity of AuNCs.

View Article and Find Full Text PDF

A fundamental understanding of nanoparticle-protein corona and its interactions with biological systems is essential for future application of engineered nanomaterials. In this work, fluorescence resonance energy transfer (FRET) is employed for studying the protein adsorption behavior of nanoparticles. The adsorption of human serum albumin (HSA) onto the surface of InP@ZnS quantum dots (QDs) with different chirality (d- and l-penicillamine) shows strong discernible differences in the binding behaviors including affinity and adsorption orientation that are obtained upon quantitative analysis of FRET data.

View Article and Find Full Text PDF