Publications by authors named "Fangying Dai"

The piggyBac (PB) transposon is the most widely used vector for generating transgenic silkworms. The stability of the PB transposon in the receptor is a serious concern that requires attention because of biosafety concerns. In this study, we found that the transgene silkworm developed loss of reporter gene traits.

View Article and Find Full Text PDF

Hydrogels with self-healing capacity can undergo self-repair, establishing safer and longer-lasting products. Hydrogel wound dressings showing self-healing capacity can prolong the lifespan of the material and provide better wound protection. Therefore, in this study, Schiff base reactions (reversible imine linkages) were utilized to design injectable self-healing hydrogels with chitosan and konjac glucomannan.

View Article and Find Full Text PDF

Developing highly active and green antibacterial agents for pathogens, especially multidrug-resistant superbugs, is vital for solving the problem of serious antibiotic resistance. Herein, we report a unique system of gold nanoparticles coated with chicken egg white (CEW) and 2-mercapto-1-methylimidazole (MMT) as a novel antibacterial agent. The CEW was used to prepare the gold nanoparticles as a commercially available reducing and stabilizing agent, and then the MMT self-assembled on the surface of nanoparticles.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

A novel Konjac glucomannan/silver nanoparticle (KGM/AgNP) composite sponge was successfully prepared via a simple 2-step method for biomedical applications as wound-healing materials. First, AgNPs were prepared with green deoxidizer egg white. Then, KGM powder was added to the AgNP solution and stirred vigorously, and the composite sponge was obtained by freeze-drying.

View Article and Find Full Text PDF

Silver inlaid with gold nanoparticles (Au-Ag NPs) prepared by using egg white with an average sized of 10 nm and homogeneous dispersion were tested and presented red fluorescence. Au-Ag NPs were loaded into chitosan as wound dressing (CS-Au-Ag). CS-Au-Ag released silver ions faster, in higher amount, and in a more durable manner than chitosan dressing loaded with silver nanoparticles with the same silver content (CS-Ag), consequently, showing enhanced antibacterial activity.

View Article and Find Full Text PDF

Spongy composites with silver nanoparticles (AgNPs) were synthesized by freeze-drying a mixture of silver nitrate (AgNO) and chitosan-l-glutamic acid (CG) derivative loaded with hyaluronic acid (HA) solution. CG/AgNP spongy composites had an interconnected porous structure and rough surfaces. When AgNPs (5-20nm) were immobilized on these spongy composites, AgNP aggregation was dependent on AgNO concentration.

View Article and Find Full Text PDF

Preventing wound infection and retaining an appropriate level of moisture around wounds represent the most critical issues in wound treatment. Towards these ends, special focus has been placed on Bombyx mori cocoons because the protective function of the silkworm cocoon resembles the manner in which the skin protects the human body. We have designed a facile technique to develop a novel silkworm cocoon-based wound film (SCWF) wound dressing utilizing a CaCl-ethanol-HO solution.

View Article and Find Full Text PDF

Silk fibroin materials have shown some success in wound dressing applications; however, their use for this purpose remains limited by a complex production process and wasted sericin. In the present study, Bombyx mori cocoon materials are used because the protective function of the silkworm cocoon resembles the manner in which the skin protects the human body. A series of silkworm cocoon sol-gel film (SCSF) wound dressings are prepared by immersion in a CaCl-ethanol-HO solution for different treatment times.

View Article and Find Full Text PDF

Chitosan is insoluble in water due to its rigid crystalline structure, which has significantly restricted its application in wound healing. The objective of this study was to synthesize a water-soluble chitosan derivative, N-succinyl-chitosan (NSC), and evaluate its ability to accelerate the wound healing process. NSC was synthesized with succinic anhydride, hydrochloric acid, and alkaline chitosan under optimized conditions, and characterized using Fourier transform infrared, proton nuclear magnetic resonance, and X-ray diffraction spectroscopy; thermal gravimetric analysis; and a solubility test.

View Article and Find Full Text PDF

In this study, we attempted to modify cotton gauze by partial carboxymethylation by varying the reaction time and concentration of monochloroacetic acid and sodium hydroxide. For each experiment, the relative value of the degree of substitution (DS) of the modified cotton gauze was evaluated and the whole blood clotting time (WBCT) and water absorption property were compared with cotton gauze and Surgicel. This revealed that, following an initial decrease, WBCT gradually increased.

View Article and Find Full Text PDF

Chitosan is a versatile biological material that is very well known for its hemostatic properties. The purpose of this study was to test the hemostatic properties of a chitosan composite obtained from silkworm pupae and gelatin. This spongy porous material was cross-linked with tannins and then freeze-dried under vacuum to obtain composites containing chitosan and gelatin in different proportions.

View Article and Find Full Text PDF

A chitosan-gelatin sponge (CSGT) was prepared using a chitosan/ascorbic acid solution blend containing gelatin, followed by crosslinking with tannin acid and freeze-drying, thereby combining the chitosan sponge and gelatin sponge. The structure of the CSGT was observed by scanning electron microscopy and was shown to have uniform and abundant pores measuring about 145-240μm in size. We also characterized the sponges by infrared spectroscopy, thermogravimetric analysis, mechanical property tests, swelling behavior analysis, water retention capacity tests, antibacterial property analysis, and cytotoxicity tests.

View Article and Find Full Text PDF

Pigmentation patterning has long interested biologists, integrating topics in ecology, development, genetics, and physiology. Wild-type neonatal larvae of the silkworm, Bombyx mori, are completely black. By contrast, the epidermis and head of larvae of the homozygous recessive sex-linked chocolate (sch) mutant are reddish brown.

View Article and Find Full Text PDF