Background: Timely prevention of major adverse cardiovascular events (MACEs) is imperative for reducing cardiovascular diseases-related mortality. Perivascular adipose tissue (PVAT), the adipose tissue surrounding coronary arteries, has attracted increased amounts of attention. Developing a model for predicting the incidence of MACE utilizing machine learning (ML) integrating clinical and PVAT features may facilitate targeted preventive interventions and improve patient outcomes.
View Article and Find Full Text PDFObjective: Early identifying arteriosclerosis in newly diagnosed type 2 diabetes (T2D) patients could contribute to choosing proper subjects for early prevention. Here, we aimed to investigate whether radiomic intermuscular adipose tissue (IMAT) analysis could be used as a novel marker to indicate arteriosclerosis in newly diagnosed T2D patients.
Methods: A total of 549 patients with newly diagnosed T2D were included in this study.