Publications by authors named "Fangxue Yan"

Fragility of regulatory T (Treg) cells manifested by the loss of neuropilin-1 (NRP1) and expression of IFNγ undermines the immune suppressive functions of Treg cells and contributes to the success of immune therapies against cancers. Intratumoral Treg cells somehow avoid fragility; however, the mechanisms by which Treg cells are protected from fragility in the tumor microenvironment are not well understood. Here, we demonstrate that the IFNAR1 chain of the type I IFN (IFN1) receptor was downregulated on intratumoral Treg cells.

View Article and Find Full Text PDF
Article Synopsis
  • Evasion of tumor immunity and resistance to treatments in solid tumors is supported by an immunosuppressive tumor microenvironment (TME), characterized by factors like regulatory T cells and adenosine.
  • The study identified that these TME factors downregulate the IFNAR1 receptor on CD8 cytotoxic T lymphocytes (CTLs) through the action of PARP11, which is increased in CTLs within tumors.
  • Inhibition of PARP11 not only maintains IFNAR1 levels but also boosts CTL activity against tumors, enhancing the effectiveness of chimeric antigen receptor (CAR) T cell therapies.
View Article and Find Full Text PDF

Unlabelled: Epigenetic programs are dysregulated in acute myeloid leukemia (AML) and help enforce an oncogenic state of differentiation arrest. To identify key epigenetic regulators of AML cell fate, we performed a differentiation-focused CRISPR screen in AML cells. This screen identified the histone acetyltransferase KAT6A as a novel regulator of myeloid differentiation that drives critical leukemogenic gene-expression programs.

View Article and Find Full Text PDF

Although immunotherapy has revolutionized cancer care, patients with pancreatic ductal adenocarcinoma (PDA) rarely respond to these treatments, a failure that is attributed to poor infiltration and activation of T cells in the tumor microenvironment (TME). We performed an CRISPR screen and identified lysine demethylase 3A (KDM3A) as a potent epigenetic regulator of immunotherapy response in PDA. Mechanistically, KDM3A acts through Krueppel-like factor 5 (KLF5) and SMAD family member 4 (SMAD4) to regulate the expression of the epidermal growth factor receptor (EGFR).

View Article and Find Full Text PDF

Although immune checkpoint blockade (ICB) improves clinical outcome in several types of malignancies, pancreatic ductal adenocarcinoma (PDA) remains refractory to this therapy. Preclinical studies have demonstrated that the relative abundance of suppressive myeloid cells versus cytotoxic T cells determines the efficacy of combination immunotherapies, which include ICB. Here, we evaluated the role of the ubiquitin-specific protease 22 (USP22) as a regulator of the immune tumor microenvironment (TME) in PDA.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is one of the most lethal blood cancers, accounting for close to a quarter of a million annual deaths worldwide. Even though genetically heterogeneous, all AMLs are characterized by two interrelated features-blocked differentiation and high proliferative capacity. Despite significant progress in our understanding of the molecular and genetic basis of AML, the treatment of AMLs with chemotherapeutic regimens has remained largely unchanged in the past 30 years.

View Article and Find Full Text PDF

Resistance to immunotherapy is one of the biggest problems of current oncotherapeutics. WhileT cell abundance is essential for tumor responsiveness to immunotherapy, factors that define the T cell inflamed tumor microenvironment are not fully understood. We conducted an unbiased approach to identify tumor-intrinsic mechanisms shaping the immune tumor microenvironment(TME), focusing on pancreatic adenocarcinoma because it is refractory to immunotherapy and excludes T cells from the TME.

View Article and Find Full Text PDF

The biological and functional heterogeneity between tumors-both across and within cancer types-poses a challenge for immunotherapy. To understand the factors underlying tumor immune heterogeneity and immunotherapy sensitivity, we established a library of congenic tumor cell clones from an autochthonous mouse model of pancreatic adenocarcinoma. These clones generated tumors that recapitulated T cell-inflamed and non-T-cell-inflamed tumor microenvironments upon implantation in immunocompetent mice, with distinct patterns of infiltration by immune cell subsets.

View Article and Find Full Text PDF

Myeloid differentiation factor 88 (MyD88) plays a central role in innate immunity response, however, how its activity is tightly regulated remains largely unknown. In this study, we identify MyD88 as a novel substrate of NEDD8, and demonstrate that MyD88 NEDDylation antagonizes its ubiquitination. Interestingly, in response to the stimulation of IL-1β, MyD88 NEDDylation is downregulated while its ubiquitination is upregulated.

View Article and Find Full Text PDF