Publications by authors named "Fangxue Du"

Article Synopsis
  • The study investigates the use of curcumin-enhanced sonodynamic therapy as a potential new treatment for malignant melanoma, focusing on its targeting ability and inducing cancer cell death.
  • Researchers created a form of curcumin coated with melanoma cell membranes, which was then tested in various experimental groups on mice to measure effectiveness and safety.
  • Results showed that the combination of biomimetic curcumin and ultrasound significantly increased apoptosis (programmed cell death) in melanoma cells, indicating a promising avenue for melanoma treatment.
View Article and Find Full Text PDF

Cancer immunotherapy has significant potential as a cancer treatment since it boosts the immune system and prevents immune escape to get rid of or fight cancers. However, its clinical applicability is still limited because of the low response rate and immune-related side effects. Recently ultrasound has been shown to alter the tumor immune microenvironment, enhance the effectiveness of other antitumor therapies, and cause tumors to become more sensitive to immunotherapy, thus providing new insights into cancer treatment.

View Article and Find Full Text PDF

Nanozymes are nanoscale materials with enzyme-mimicking catalytic properties. Nanozymes can mimic the mechanism of natural enzyme molecules. By means of advanced chemical synthesis technology, the size, shape, and surface characteristics of nanozymes can be accurately regulated, and their catalytic properties can be customized according to the specific need.

View Article and Find Full Text PDF

Objective: To formulate a ZIF-8 nano mimetic enzyme conjugated with platinum metal (ZIF-8@Pt) that can scavenge reactive oxygen species (ROS) and to explore its potential applications in the treatment of rheumatoid arthritis (RA).

Methods: The ZIF-8@Pt nanozyme was created by reduction. Characterization of the nanozyme was then performed and its ability to mimic enzymes was investigated.

View Article and Find Full Text PDF

Cancer is a growing worldwide health problem with the most broadly studied treatments, in which immunotherapy has made notable advancements in recent years. However, innumerable patients have presented a poor response to immunotherapy and simultaneously experienced immune-related adverse events, with failed therapeutic results and increased mortality rates. Consequently, it is crucial to develop alternate tactics to boost therapeutic effects without producing negative side effects.

View Article and Find Full Text PDF

Artificial peroxisomes (APEXs) or peroxisome mimics have caught a lot of attention in nanomedicine and biomaterial science in the last decade, which have great potential in clinically diagnosing and treating diseases. APEXs are typically constructed from a semipermeable membrane that encloses natural enzymes or enzyme-mimetic catalysts to perform peroxisome-/enzyme-mimetic activities. The recent rapid progress regarding their biocatalytic stability, adjustable activity, and surface functionality has significantly promoted APEXs systems in real-life applications.

View Article and Find Full Text PDF

The external-stimulation-induced reactive-oxygen-species (ROS) generation has attracted increasing attention in therapeutics for malignant tumors. However, engineering a nanoplatform that integrates with efficient biocatalytic ROS generation, ultrasound-amplified ROS production, and simultaneous relief of tumor hypoxia is still a great challenge. Here, we create new semiconducting titanate-supported Ru clusterzymes (RuNC/BTO) for ultrasound-amplified biocatalytic tumor nanotherapies.

View Article and Find Full Text PDF

Porphyrin-based nanozymes (Porzymes) have shown promising application potential to fight against tumors using catalytically generated reactive oxygen species from the excessively produced HO in the tumor microenvironment. However, the low coordination porphyrin (CP) loading ratio, difficult controllable nanostructure, low bioavailability, and low biocatalytic activities of current established Porzymes have severely limited their antitumor applications. Here, a novel malignant melanoma cell membrane-coated Pd-based CP nanoplatform (Trojan Porzymes) has been synthesized for biocatalytic and homologous tumor therapies.

View Article and Find Full Text PDF

Sonocatalytic nanoagents (SCNs), a kind of sonosensitizers, could catalyze oxygen to generate abundant reactive oxygen species (ROS) under stimulations of noninvasive and deep-penetrating ultrasound (US), which is commonly used for sonodynamic therapy (SDT) of tumors such as malignant melanoma. However, poor bioavailability of most SCNs and fast quenching of extracellular-generating ROS from SDT limit further applications of SCNs in the SDT of tumors. Herein, we synthesized a new kind of TiO-based SCN functionalized with the malignant melanoma cell membrane (B16F10M) and programmed cell death-ligand 1 antibody (aPD-L1) for homology and immune checkpoint dual-targeted and enhanced sonodynamic tumor therapy.

View Article and Find Full Text PDF

The diversity, complexity, and heterogeneity of malignant tumor seriously undermine the efficiency of mono-modal treatment. Recently, multi-modal therapeutics with enhanced antitumor efficiencies have attracted increasing attention. However, designing a nanotherapeutic platform with uniform morphology in nanoscale that integrates with efficient chem-/sono-/photo-trimodal tumor therapies is still a great challenge.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a common joint disease in the middle and old age group with obvious cartilage damage, and the regeneration of cartilage is the key to alleviating or treating OA. In stem cell therapy, bone marrow stem cell (BMSC) has been confirmed to have cartilage regeneration ability. However, the role of stem cells in promoting articular cartilage regeneration is severely limited by their low homing rate.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkv2ehpcgf6sf9cn5779bcdc770qou7pe): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once