Publications by authors named "Fangxiong Zhang"

Writer's cramp (WC) is a task-specific focal dystonia that occurs selectively in the hand and arm during writing. Previous studies have shown a role for genetics in the pathology of task-specific focal dystonia. However, to date, no causal gene has been reported for task-specific focal dystonia, including WC.

View Article and Find Full Text PDF

Fragile X Syndrome results from a loss of Fragile X Mental Retardation Protein (FMRP). We now show that FMRP is a member of a Cav3-Kv4 ion channel complex that is known to regulate A-type potassium current in cerebellar granule cells to produce mossy fiber LTP. Mossy fiber LTP is absent in Fmr1 knockout (KO) mice but is restored by FMRP(1-297)-tat peptide.

View Article and Find Full Text PDF

Clinical and preclinical studies have shown that patients with Diabetic Neuropathy Pain (DNP) present with increased tumor necrosis factor alpha (TNF-α) serum concentration, whereas studies with diabetic animals have shown that TNF-α induces an increase in Na1.7 sodium channel expression. This is expected to result in sensitization of nociceptor neuron terminals, and therefore the development of DNP.

View Article and Find Full Text PDF

Two paternally-inherited missense variants in CACNA1H were identified and characterized in a 6-year-old child with generalized epilepsy. Febrile and unprovoked seizures were present in this child. Both variants were expressed in cis or isolation using human recombinant Cav3.

View Article and Find Full Text PDF

Cav3.2 calcium channels play a key role in nociceptive signaling in the primary afferent pain pathway. We have previously reported the regulation of Cav3.

View Article and Find Full Text PDF

Drugs targeting different calcium channel subtypes have strong therapeutic potential for future drug development for cardiovascular disorders, neuropsychiatric diseases and cancer. This study aims to design and synthesize a new series of C2 substituted dihydropyrimidines to mimic the structure features of third generation long acting dihydropyridine calcium channel blockers and dihydropyrimidines analogues. The target compounds have been evaluated as blockers for Ca1.

View Article and Find Full Text PDF

New dihydropyrimidines bearing various lipophilic pharmacophores and functionalities at position 3 were designed and synthesized. The basic framework of the new compounds was designed to maintain the main structural requirements for calcium channel blocking activity of the known dihydropyridines and dihydropyrimidines calcium channel blockers. The newly synthesized compounds were evaluated as antagonists for Ca1.

View Article and Find Full Text PDF

The NLRP3 inflammasome senses a range of cellular disturbances, although no consensus exists regarding a common mechanism. Canonical NLRP3 activation is blocked by high extracellular K, regardless of the activating signal. We report here that canonical NLRP3 activation leads to Ca flux and increased calpain activity.

View Article and Find Full Text PDF

This study describes the functional interaction between the Cav3.1 and Cav3.2 T-type calcium channels and cytoskeletal spectrin (α/β) and ankyrin B proteins.

View Article and Find Full Text PDF

Cavα2δ subunits contribute to the cell-surface expression of Cav2 calcium channels. Upregulation of Cavα2δ-1 in dorsal root ganglion neurons occurs after nerve injury and results in an increased synaptic abundance of Cav2.2 channels in the spinal dorsal horn, thus enhancing the transmission of pain signals.

View Article and Find Full Text PDF

Ca1 L-type calcium channels are key to regulating neuronal excitability, with the range of functional roles enhanced by interactions with calmodulin, accessory proteins, or CaMKII that modulate channel activity. In hippocampal pyramidal cells, a prominent elevation of Ca1 activity is apparent in late channel openings that can last for seconds following a depolarizing stimulus train. The current study tested the hypothesis that a reported interaction among Ca1.

View Article and Find Full Text PDF

Low-voltage-activated T-type calcium channels are essential contributors to the functioning of thalamocortical neurons by supporting burst-firing mode of action potentials. Enhanced T-type calcium conductance has been reported in the Genetic Absence Epilepsy Rat from Strasbourg (GAERS) and proposed to be causally related to the overall development of absence seizure activity. Here, we show that calnexin, an endoplasmic reticulum integral membrane protein, interacts with the III-IV linker region of the Ca3.

View Article and Find Full Text PDF

Calmodulin (CaM) is an important signaling molecule that regulates a vast array of cellular functions by activating second messengers involved in cell function and plasticity. Low voltage-activated calcium channels of the Cav3 family have the important role of mediating low threshold calcium influx, but were not believed to interact with CaM. We find a constitutive association between CaM and the Cav3.

View Article and Find Full Text PDF

As a bioisosteric strategy to overcome the poor metabolic stability of lead compound KYS05090S, a series of new fluoro-substituted 3,4-dihydroquinazoline derivatives was prepared and evaluated for T-type calcium channel (Ca3.2) block, cytotoxic effects and liver microsomal stability. Among them, compound 8h (KCP10068F) containing 4-fluorobenzyl amide and 4-cyclohexylphenyl ring potently blocked Ca3.

View Article and Find Full Text PDF

Formation of complexes between ion channels is important for signal processing in the brain. Here we investigate the biochemical and biophysical interactions between HCN1 channels and Cav3.2 T-type channels.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) are the main cause of deaths worldwide. Up-to-date, hypertension is the most significant contributing factor to CVDs. Recent clinical studies recommend calcium channel blockers (CCBs) as effective treatment alone or in combination with other medications.

View Article and Find Full Text PDF

Low-voltage-activated calcium channels are important regulators of neurotransmission and membrane ion conductance. A plethora of intracellular events rely on their modulation. Accordingly, they are implicated in many disorders including epilepsy, Parkinson's disease, pain and other neurological diseases.

View Article and Find Full Text PDF

Objectives: Carisbamate (CRS) is a novel monocarbamate compound that possesses antiseizure and neuroprotective properties. However, the mechanisms underlying these actions remain unclear. Here, we tested both direct and indirect effects of CRS on several cellular systems that regulate intracellular calcium concentration [Ca ] .

View Article and Find Full Text PDF

T-type calcium channels are key contributors to neuronal physiology where they shape electrical activity of nerve cells and contribute to the release of neurotransmitters. Enhanced T-type channel expression has been causally linked to a number of pathological conditions including peripheral painful diabetic neuropathy. Recently, it was demonstrated that asparagine-linked glycosylation not only plays an essential role in regulating cell surface expression of Ca3.

View Article and Find Full Text PDF

Background: T-type calcium channels are important contributors to signaling in the primary afferent pain pathway and are thus important targets for the development of analgesics. It has been previously reported that certain piperazine-based compounds such as flunarizine are able to inhibit T-type calcium channels. Thus, we hypothesized that novel piperazine compounds could potentially act as analgesics.

View Article and Find Full Text PDF

T-type channels are important contributors to the initiation and the maintenance of chronic pain states. Blocking T-type channels is therefore a possible therapeutic strategy for relieving pain. Here, we report the Cav3.

View Article and Find Full Text PDF

Four positively charged compounds, previously shown to produce analgesic activity by interacting with prokineticin receptor or T-type calcium channels, were tested for their ability to inhibit capsaicin-induced elevation of intracellular Ca(2+) in HEK-293 cells stably transfected with the human recombinant TRPV1, with the goal of identifying novel TRPV1 open-pore inhibitors. KYS-05090 showed the highest potency as a TRPV1 antagonist, even higher than that of the open-pore triazine inhibitor 8aA. The latter showed quite remarkable agonist/desensitizer activity at the rat recombinant TRPM8 channel.

View Article and Find Full Text PDF

The single application of high-concentration of capsaicin has been used as an analgesic therapy of persistent pain. However, its effectiveness and underlying mechanisms remain to be further evaluated with experimental approaches. The present study provided evidence showing that the single application of capsaicin dose-dependently alleviated nociceptive hypersensitivity, and reduced the action potential firing in small-diameter neurons of the dorsal root ganglia (DRG) in rats and mice.

View Article and Find Full Text PDF

Rem, Rad, Kir/Gem (RGK) proteins, including Rem2, mediate profound inhibition of high-voltage activated Ca(2+) channels containing intracellular regulatory β subunits. All RGK proteins bind to voltage-gated Ca(2+) channel β subunit (Cavβ) subunits in vitro, but the necessity of the interaction for current inhibition remains controversial. This study applies NMR and calorimetric techniques to map the binding site for Rem2 on human Cavβ4a and measure its binding affinity.

View Article and Find Full Text PDF

Background: Mercury is a well-known neurotoxin implicated in a wide range of neurological or psychiatric disorders including autism spectrum disorders, Alzheimer's disease, Parkinson's disease, epilepsy, depression, mood disorders and tremor. Mercury-induced neuronal degeneration is thought to invoke glutamate-mediated excitotoxicity, however, the underlying mechanisms remain poorly understood. Here, we examine the effects of various mercury concentrations (including pathological levels present in human plasma or cerebrospinal fluid) on cultured, rat cortical neurons.

View Article and Find Full Text PDF