Publications by authors named "Fangxin Hu"

The emerging cell death modality of ferroptosis has garnered increasing attention for antitumor treatment but still suffers from low therapeutic efficacy. A metal-organic frameworks (MOFs)-based magnetic nanozyme (PZFH) comprising porphyrin-based Zr-MOF (PCN) on zinc ferrite (ZF) nanoparticles modified with hyaluronic acid, delivering excellent magnetophotonic response for efficient ferroptosis, is reported here. PZFH shows multienzyme-like cascade activity encompassing a photon-triggered oxidase-like catalysis to generate O , which is converted to HO by superoxide dismutase-like activity and subsequent ·OH by magneto-promoted peroxidase (POD) behavior.

View Article and Find Full Text PDF

Single-atom catalysts exhibit superior CO -to-CO catalytic activity, but poor kinetics of proton-coupled electron transfer (PCET) steps still limit the overall performance toward the industrial scale. Here, we constructed a Fe-P atom paired catalyst onto nitrogen doped graphitic layer (Fe /PNG) to accelerate PCET step. Fe /PNG delivers an industrial CO current of 1 A with FE over 90 % at 2.

View Article and Find Full Text PDF

Hydrogen peroxide (H O ) is essential in oxidative stress and signal regulation of organs of animal body. Realizing in vitro quantification of H O released from organs is significant, but faces challenges due to short lifetime of H O and complex bio-environment. Herein, rationally designed and constructed a photoelectrochemical (PEC) sensor for in vitro sensing of H O , in which atomically dispersed iron active sites (Hemin) modified graphdiyne (Fe-GDY) serves as photoelectrode and catalyzes photo-electro-Fenton process.

View Article and Find Full Text PDF

In this work, a self-luminescent micron europium cluster coordination polymer (Eu-CCP) cathode electrochemiluminescence (ECL) emitter is first reported. The mass percentage of Eu in Eu-CCP is 50.1%, indicating that Eu-CCP has a high-nucleation luminescence center.

View Article and Find Full Text PDF

Infectious pathogens cause severe threats to public health due to their frightening infectivity and lethal capacity. Rapid and accurate detection of pathogens is of great significance for preventing their infection. Gold nanoparticles have drawn considerable attention in colorimetric biosensing during the past decades due to their unique physicochemical properties.

View Article and Find Full Text PDF

Designing and synthesizing highly efficient and stable electrocatalysts for hydrogen evolution reaction (HER) is important for realizing the hydrogen economy. Tuning the electronic structure of the electrocatalysts is essential to achieve optimal HER activity, and interfacial engineering is an effective strategy to induce electron transfer in a heterostructure interface to optimize HER kinetics. In this study, ultrafine RhP /Rh nanoparticles are synthesized with a well-defined semiconductor-metal heterointerface embedded in N,P co-doped graphene (RhP /Rh@NPG) via a one-step pyrolysis.

View Article and Find Full Text PDF

Intestinal inflammation often restricts the health and production of animals. MiR-146a has been proved to be an anti-inflammatory molecule in inflammatory disorders, but its role in the intestinal injury and regeneration remains unclear. The study aimed to explore the inflammatory response of intestinal epithelial cells (IECs) in intestinal tissue-specific miR-146a-5p knockout mouse models.

View Article and Find Full Text PDF

By rationally introducing Ce(III) and Tb(III) into a coordination polymer (CP), a series of lanthanide bimetallic coordination polymers (Tb:Ce-BCPs) has been prepared in this work. Compared with pure Tb-CP and Ce-CP, bimetallic Tb:Ce-BCPs show stronger and more stable ECL intensity, which is mainly attributed to the "dual sensitization effect" combined with the energy transfer from Ce(III) to Tb(III) and the antenna effect from the ligand to the center atoms of Ce(III) and Tb(III). In the meantime, after explore the ECL intensity and morphologies of all these Tb:Ce-BCPs, the results show that the morphologies and ECL intensities of Tb:Ce-BCPs can be adjusted by doping different molar ratios of Ce(III) in Tb:Ce-BCP.

View Article and Find Full Text PDF

In order to examine the seismic behavior of high-strength steel extended end-plate connections, a three-dimensional efficient finite-element model in Abaqus was established subjected to cyclic loading at the beam end. Geometrical dimensions, boundary conditions, element types, contact properties between the bolts, end-plate and column flange, and material cyclic constitutive models were described in detail. Geometry and material nonlinearity were adequately considered.

View Article and Find Full Text PDF

Instability of 2D phosphorene material is the major obstacle for its broad applications. Herein phosphorene is sandwiched with self-assembled iron porphyrin monolayers on both sides (I-Phene) to significantly enhance stability. Iron porphyrin has strong interaction with phosphorene through formation of PFe bonds.

View Article and Find Full Text PDF

Nitric oxide as a signal molecule participates in a variety of physiological and pathological processes but its real-time detection in cell assays still faces challenging because of the trace amount, short half-life and easy conversion to other substances. We report here a rational design by assembling highly π-conjugated and small capacitive gaphdiyne (GDY) with a coordination complex of hemin (HEM) into a molecularly assembled material of GDY/HEM to achieve ultrafast and real-time monitoring of nitric oxide in cell assays. GDY comprising alkynyl C atoms can hybridize with the HEM to enable strong π-π interaction and atomic dispersion of iron sites while avoiding the formation of catalytically inactive dimer for the HEM.

View Article and Find Full Text PDF

The bifunctional moderator is urgently needed in the field of ratiometric electrochemiluminescence (ECL) sensing since it can mediate simultaneously two ECL signals to conveniently realize their opposite change trend. This work designed a novel dual-signal combined nanoprobe with carboxyl-functionalized poly[(9,9-dioctylfluorenyl-2,7-diyl)--(1,4-benzo-{2,1',3}-thiadazole)] nanoparticles (-PFBT NPs) as the anodic ECL probe and -cysteine capped CdS quantum dots (-CdS QDs) as the cathodic ECL probe, which performed a dual-signal output capability without any additional coreactants. More importantly, hydrogen peroxide (HO) produced in situ by enzyme-catalyzed reaction was developed as a bifunctional moderator for simultaneously regulating two signals.

View Article and Find Full Text PDF

Dopamine (DA) as an important neurotransmitter plays an important role in physiological activities, and its abnormal level can cause diseases such as Parkinson's disease. However, the clinical analysis of DA mainly relies on time-consuming and expensive liquid chromatography and molecular spectrometer. We present here a design and fabrication of inexpensive strip sensor constructed from screen printed electrodes for sensitive and selective detection of DA.

View Article and Find Full Text PDF

The reduced graphene oxide (rGO) could strongly adsorb and quench the fluorescence of dye-labeled single-stranded DNA (ssDNA); thus, it is widely applied in fluorescent sensors. However, these sensors may suffer from a limited sensitivity due to the low fluorescence recovery when adding the complementary DNA (cDNA) sequence. In this work, the powerful DNA branched junctions were constructed to improve the fluorescence recovery of FAM-labeled probe on rGO.

View Article and Find Full Text PDF

As an important glycoprotein of the lectin family, soybean agglutinin (SBA) is an anti-nutritional factor with considerable toxic and side effects and plays a significant role in tumor analysis. In order to achieve the sensitive detection of SBA, a sandwich-structured electrochemiluminescence (ECL) biosensor was constructed using carboxylated carbon nitride (C-g-CN) as luminophore and D-galactosamine (galM) as a recognition element. A glassy carbon electrode (GCE) was modified with Au nanoparticles (Au NPs) for capturing the galM via Au-N bond, and further capturing the target SBA by specific recognition between galM and SBA.

View Article and Find Full Text PDF

A novel electrode was developed through electrodepositing gold nanoparticles (GNPs) on overoxidized-polyimidazole (PImox) film modified glassy carbon electrode (GCE). The combination of GNPs and the PImox film endowed the GNPs/PImox/GCE with good biological compatibility, high selectivity and sensitivity and excellent electrochemical catalytic activities towards ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp). In the fourfold co-existence system, the peak separations between AA-DA, DA-UA and UA-Trp were large up to 186, 165 and 285 mV, respectively.

View Article and Find Full Text PDF

A novel scheme for the fabrication of gold/platinum hybrid functionalized ZnO nanorods (Pt-Au@ZnONRs) and multiwalled carbon nanotubes (MWCNTs) modified electrode is presented and its application for cholesterol biosensor is investigated. Firstly, Pt-Au@ZnONRs was prepared by the method of chemical synthesis. Then, the Pt-Au@ZnONRs suspension was dropped on the MWCNTs modified glass carbon electrode, and followed with cholesterol oxidase (ChOx) immobilization by the adsorbing interaction between the nano-material and ChOx as well as the electrostatic interaction between ZnONRs and ChOx molecules.

View Article and Find Full Text PDF

In this paper, the reduced graphene oxide and multiwall carbon nanotubes hybrid materials (RGO-MWNTs) were prepared and a strategy for detecting environmental contaminations was proposed on the basis of RGO-MWNTs modified electrode. The hybrid materials were characterized by the scanning electron microscopy (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS) and N(2) sorption-desorption isotherms. Due to the excellent catalytic activity, enhanced electrical conductivity and high surface area of the RGO-MWNTs, the simultaneous measurement of hydroquinone (HQ), catechol (CC), p-cresol (PC) and nitrite (NO(2)(-)) with four well-separate peaks was achieved at the RGO-MWNTs modified electrode.

View Article and Find Full Text PDF

In this paper, a novel method for detecting concanavalin A (Con A) was developed based on lectin-carbohydrate biospecific interactions. Multi-wall carbon nanotube-polyaniline (MWNT-PANI) nanocomposites, synthesized by in situ polymerization, were chosen to immobilize d-glucose through the Schiff-base reaction. The immobilized D-glucose showed high binding sensitivity and excellent selectivity to its target lectin, Con A.

View Article and Find Full Text PDF

A novel biosensor has been constructed by the electrodeposition of Au-nanoclusters (nano-Au) on poly(3-amino-5-mercapto-1,2,4-triazole) (p-TA) film modified glassy carbon electrode (GCE) and employed for the simultaneous determination of dopamine (DA), ascorbic acid (AA), uric acid (UA) and nitrite (NO(2)(-)). NH(2) and SH groups exposed to the p-TA layer are helpful for the electrodeposition of nano-Au. The combination of nano-Au and p-TA endow the biosensor with large surface area, good biological compatibility, electricity and stability, high selectivity and sensitivity and flexible and controllable electrodeposition process.

View Article and Find Full Text PDF