The TEMPO/NaBr/NaClO system was used to modify konjac glucomannan and prepare β-1,4-linked D-mannuronic/glucuronic acid oligosaccharides. The impact of oxidant amount on the degree of oxidation, molecular weight, terminal structure and the ratio of sugar units were systematically investigated. Mannoses were transformed to mannuronic acids quantitatively, while some glucose were transformed to glucuronic acids, some degraded.
View Article and Find Full Text PDFTwo bottom-up strategies, disaccharide and oligosaccharide analyses, were applied to elucidate the structure of a fucosylated chondroitin sulfate (FCS). The FCS was hydrolyzed with mild acid. The remained part was digested with CS lyase for disaccharide analysis.
View Article and Find Full Text PDFOxidized starch (oxStarch) is a major derivative of starch. In present study, 4-acetamide-TEMPO system was firstly applied to prepare specifically oxidized starch, homogeneous 1,4-linked α-D-glucuronan. The impact of oxidant amount, 4-acetamide-TEMPO amount and reaction temperature on the properties of products were investigated.
View Article and Find Full Text PDFHeparin, a highly sulfated glycosaminoglycan, has been used as a clinical anticoagulant over 80 years. However, heparin-induced thrombocytopenia and thrombosis (HITT) is a serious side effect of heparin therapy, resulting in relatively high risk of amputation and even death. HITT is caused by forming of complexes between heparin and platelet factor 4 (PF4).
View Article and Find Full Text PDFIn this study, the TEMPO-mediated (TEMPO/NaBr/NaClO) oxidation pattern of curdlan was investigated through comprehensively structural analysis of the corresponding oxidized products. During the structural analysis, infrared spectroscopy (IR), nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography tandem multiple angle laser scattering (GPC-MALS) and ultra-high performance liquid chromatography tandem quadrupole time of flight mass spectrometry (UHPLC-Q/TOF-MS) were applied. As a result, the homogenous β1-3 polyglucuronic acids (MW, 49.
View Article and Find Full Text PDF