Publications by authors named "Fangwei Si"

Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge.

View Article and Find Full Text PDF

Despite much progress, image processing remains a significant bottleneck for high-throughput analysis of microscopy data. One popular platform for single-cell time-lapse imaging is the mother machine, which enables long-term tracking of microbial cells under precisely controlled growth conditions. While several mother machine image analysis pipelines have been developed in the past several years, adoption by a non-expert audience remains a challenge.

View Article and Find Full Text PDF

Characterizing the physiological response of bacterial cells to antibiotic treatment is crucial for the design of antibacterial therapies and for understanding the mechanisms of antibiotic resistance. While the effects of antibiotics are commonly characterized by their minimum inhibitory concentrations or the minimum bactericidal concentrations, the effects of antibiotics on cell morphology and physiology are less well characterized. Recent technological advances in single-cell studies of bacterial physiology have revealed how different antibiotic drugs affect the physiological state of the cell, including growth rate, cell size and shape, and macromolecular composition.

View Article and Find Full Text PDF

We examine five quantitative models of the cell-cycle and cell-size control in and that have been proposed over the last decade to explain single-cell experimental data generated with high-throughput methods. After presenting the statistical properties of these models, we test their predictions against experimental data. Based on simple calculations of the defining correlations in each model, we first dismiss the stochastic Helmstetter-Cooper model and the Initiation Adder model, and show that both the Replication Double Adder (RDA) and the Independent Double Adder (IDA) model are more consistent with the data than the other models.

View Article and Find Full Text PDF

Evolutionarily divergent bacteria share a common phenomenological strategy for cell-size homeostasis under steady-state conditions. In the presence of inherent physiological stochasticity, cells following this "adder" principle gradually return to their steady-state size by adding a constant volume between birth and division, regardless of their size at birth. However, the mechanism of the adder has been unknown despite intense efforts.

View Article and Find Full Text PDF

Eukaryotic cells are sensitive to mechanical forces they experience from the environment. The process of mechanosensation is complex, and involves elements such as the cytoskeleton and active contraction from myosin motors. Ultimately, mechanosensation is connected to changes in gene expression in the cell, known as mechanotransduction.

View Article and Find Full Text PDF

Bacterial physiology is a branch of biology that aims to understand overarching principles of cellular reproduction. Many important issues in bacterial physiology are inherently quantitative, and major contributors to the field have often brought together tools and ways of thinking from multiple disciplines. This article presents a comprehensive overview of major ideas and approaches developed since the early 20th century for anyone who is interested in the fundamental problems in bacterial physiology.

View Article and Find Full Text PDF

It is generally assumed that the allocation and synthesis of total cellular resources in microorganisms are uniquely determined by the growth conditions. Adaptation to a new physiological state leads to a change in cell size via reallocation of cellular resources. However, it has not been understood how cell size is coordinated with biosynthesis and robustly adapts to physiological states.

View Article and Find Full Text PDF

Quantitative single cell measurements have shown that cell cycle duration (the time between cell divisions) for diverse cell types is a noisy variable. The underlying distribution is mean scalable with a universal shape for many cell types in a variety of environments. Here we explore through both experiment and theory the response of these distributions to large environmental perturbations.

View Article and Find Full Text PDF

Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface.

View Article and Find Full Text PDF

A combination of physical and chemical processes is involved in determining the bacterial cell shape. In standard medium, Escherichia coli cells are rod-shaped, and maintain a constant diameter during exponential growth. Here, we demonstrate that by applying compressive forces to growing E.

View Article and Find Full Text PDF

Cytokinesis in bacteria is accomplished by a ring-shaped cell-division complex (the Z-ring). The primary component of the Z-ring is FtsZ, a filamentous tubulin homolog that serves as a scaffold for the recruitment of other cell-division-related proteins. FtsZ forms filaments and bundles.

View Article and Find Full Text PDF

In bacteria, cytoskeletal filament bundles such as MreB control the cell morphology and determine whether the cell takes on a spherical or a rod-like shape. Here we use a theoretical model to describe the interplay of cell wall growth, mechanics, and cytoskeletal filaments in shaping the bacterial cell. We predict that growing cells without MreB exhibit an instability that favors rounded cells.

View Article and Find Full Text PDF