Aims: The development and selection of T cells occur within the thymus. This organ involutes throughout life, compromising the generation of T cells and, consequently, the efficacy of the immune system. Mesenchymal stem cells (MSC) have beneficial effects on the immune system.
View Article and Find Full Text PDFLignin has emerged as a promising eco-friendly multifunctional ingredient for cosmetic applications, due to its ability to protect against ultraviolet radiation and its antioxidant and antimicrobial properties. However, its typical dark color and low water solubility limit its application in cosmetics. This study presents a simple process for obtaining light-colored lignin (LCLig) from sugarcane bagasse (SCB) alkaline black liquor, involving an oxidation treatment with hydrogen peroxide, followed by precipitation with sulfuric acid.
View Article and Find Full Text PDFSurface topographies of cell culture substrates can be used to generate cell culture environments similar to the cell niches. the physical properties of the extracellular matrix (ECM), such as its topography, provide physical cues that play an important role in modulating cell function. Mimicking these properties remains a challenge to provide realistic environments for cells.
View Article and Find Full Text PDFDiet is a crucial factor on health and well-being of livestock animals. Nutritional strengthening with diet formulations is essential to the livestock industry and animal perfor-mance. Searching for valuable feed additives among by-products may promote not only circular economy, but also functional diets.
View Article and Find Full Text PDFThe interaction between cells and biomaterials is essential for the success of biomedical applications in which the implantation of biomaterials in the human body is necessary. It has been demonstrated that material's chemical, mechanical, and structural properties can influence cell behaviour. The surface topography of biomaterials is a physical property that can have a major role in mediating cellmaterial interactions.
View Article and Find Full Text PDFThe implantation of biomaterial devices can negatively impact the local microenvironment through several processes including the injury incurred during the implantation process and the associated host inflammatory response. Immune cell responses to implantable biomaterial devices mediate host-material interactions. Indeed, the immune system plays a central role in several biological processes required for the integration of biomaterials such as wound healing, tissue integration, inflammation, and foreign body reactions.
View Article and Find Full Text PDFNon-melanoma carcinoma has high incidence rates and has two most common subtypes: basal cell carcinoma and squamous cell carcinoma. This type of carcinoma is usually not fatal; however, it can destroy sensory organs such as the nose, ears, and lips. The treatment of these injuries using non-invasive methods is thus strongly recommended.
View Article and Find Full Text PDFThe skin is a complex and multifunctional organ, in which the static versus dynamic balance is responsible for its constant adaptation to variations in the external environment that is continuously exposed. One of the most important functions of the skin is its ability to act as a protective barrier, against the entry of foreign substances and against the excessive loss of endogenous material. Human skin imposes physical, chemical and biological limitations on all types of permeating agents that can cross the epithelial barrier.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
October 2021
The development of bioresponsive interfaces that can induce a beneficial impact on cell mechanisms, such as adhesion, proliferation, migration and differentiation are of utmost relevance in Tissue engineering (TE) approaches. The surface topography is a captivating property that contribute to interesting cell responses, being inspired by several cues found in nature. Therefore, the study herein presented reports the fabrication of a surface topography using the Rubus fruticosus leaf on spin casting polycaprolactone (PCL) membranes.
View Article and Find Full Text PDFSunscreens have been employed on daily skin care for centuries. Their role in protecting the skin from sun damage, avoiding accelerated photoaging and even limiting the risk of development of skin cancer is unquestionable. Although several chemical and physical filters are approved as sunscreens for human use, their safety profile is dependent on their concentration in the formulation which governs their acceptance by the regulatory agencies.
View Article and Find Full Text PDFA major hallmark of diabetes is a constant high blood glucose level (hyperglycaemia), resulting in endothelial dysfunction. Transient or prolonged hyperglycemia can cause diabetic vasculopathy, a secondary systemic damage. C-Peptide is a product of cleavage of proinsulin by a serine protease that occurs within the pancreatic β-cells, being secreted in similar amounts as insulin.
View Article and Find Full Text PDFSeveral therapeutic properties have been attributed to epigallocatechin gallate (EGCG), a phytopharmaceutical polyphenol with antioxidant and antiproliferative activity. EGCG is, however, very prone to oxidation in aqueous solutions which changes its bioactive properties. Its loading in nanoparticles has been proposed to reduce its degradation while increasing its efficacy.
View Article and Find Full Text PDFThe present work reports the effect of polysaccharides (chitosan and sodium alginate) on silica nanoparticles (SiNP) for hydrophilic molecules delivery taking insulin as model drug. The influence of tetraethyl orthosilicate (TEOS) and homogenization speed on SiNP properties was assessed by a 2 factorial design achieving as optimal parameters: 0.43 mol/L of TEOS and homogenization speed of 5000 rpm.
View Article and Find Full Text PDFThe aim of this work is development of a nontoxic, long-term stable solid lipid nanoparticles (SLN) formulation for the loading of Nimesulide (NiM) by a 2 factorial design. The optimized formulation was composed of 10 wt% of glyceryl behenate and 2.5 wt% of poloxamer 188.
View Article and Find Full Text PDFAutoimmune diseases (ADs) constitute a heterogeneous group of more than 100 pathophysiological conditions in which an immune response against the self is observed. The incidence and prevalence of these chronic diseases are increasing with inherently high social and economic impacts. The currently available therapies generally focus on reducing the activity of the immune system and, therefore, can present severe side effects such as enhanced patient susceptibility to opportunistic infections.
View Article and Find Full Text PDFThe reduction of the particle size of drugs of pharmaceutical interest down to the nano-sized range has dramatically changed their physicochemical properties. The greatest disadvantage of nanocrystals is their inherent instability, due to the risk of crystal growth. Thus, the selection of an appropriate stabilizer is crucial to obtain long-term physicochemically stable nanocrystals.
View Article and Find Full Text PDFCationic lipid nanoparticles (LNs) have been tested for sustained release and site-specific targeting of epigallocatechin gallate (EGCG), a potential polyphenol with improved pharmacological profile for the treatment of ocular pathologies, such as age-related macular edema, diabetic retinopathy, and inflammatory disorders. Cationic EGCG-LNs were produced by double-emulsion technique; the in vitro release study was performed in a dialysis bag, followed by the drug assay using a previously validated RP-HPLC method. In vitro HET-CAM study was carried out using chicken embryos to determine the potential risk of irritation of the developed formulations.
View Article and Find Full Text PDFThe ocular delivery of drugs encounters several limitations because of the dynamic and static barriers of the human's eye anatomy and physiology. The poor bioavailability of drugs are mainly related to the topical administration, i.e.
View Article and Find Full Text PDFHydrophilic polymers are the most common group of polymers used in the preparation of modifiedrelease drug delivery systems. This is due to their versatility, low cost, high production yield, as well as easy manufacturing and adequate in vitro/in vivo correlation. In normal physiological conditions, the matrix controls the release of the loaded drug over time through a process of diffusion and/or erosion of the matrix, depending on its physicochemical composition.
View Article and Find Full Text PDFThe present paper focuses on the development and characterization of silica nanoparticles (SiNP) coated with hydrophilic polymers as mucoadhesive carriers for oral administration of insulin. SiNP were prepared by sol-gel technology under mild conditions and coated with different hydrophilic polymers, namely, chitosan, sodium alginate or poly(ethylene glycol) (PEG) with low and high molecular weight (PEG 6000 and PEG 20000) to increase the residence time at intestinal mucosa. The mean size and size distribution, association efficiency, insulin structure and insulin thermal denaturation have been determined.
View Article and Find Full Text PDFTramadol hydrochloride (TrHC) is a synthetic analgesic drug exhibiting opioid and non-opioid properties, acting mainly on the central nervous system. It has been mostly used to treat pain, although its use to treat anxiety and depression has also been documented. These properties arise from the fact that they inhibit serotonin (5-HT) reuptake augmenting 5-HT concentration on the synaptic cleft.
View Article and Find Full Text PDFEur J Pharm Biopharm
September 2015
Diabetic retinopathy (DR) is a consequence of diabetes mellitus at the ocular level, leading to vision loss, and contributing to the decrease of patient's life quality. The biochemical and anatomic abnormalities that occur in DR are discussed in this review to better understand and manage the development of new therapeutic strategies. The use of new drug delivery systems based on nanoparticles (e.
View Article and Find Full Text PDFThe present work aimed at studying the interaction between insulin and SiNP surfaced with mucoadhesive polymers (chitosan, sodium alginate or polyethylene glycol) and the evaluation of their biocompatibility with HepG2 and Caco-2 cell lines, which mimic in vivo the target of insulin-loaded nanoparticles upon oral administration. Thus, a systematic physicochemical study of the surface-modified insulin-silica nanoparticles (Ins-SiNP) using mucoadhesive polymers has been described. The surfacing of nanoparticle involved the coating of silica nanoparticles (SiNP) with different mucoadhesive polymers, to achieve high contact between the systems and the gut mucosa to enhance the oral insulin bioavailability.
View Article and Find Full Text PDF