To investigate the efficacy of epigallocatechin gallate (EGCG) and its underlying mechanism in preventing bisphenol-A-induced metabolic disorders, in this study, a mice model of metabolic disorders induced by BPA was developed to investigate the efficacy and mechanism of EGCG using microbiomes and metabolomics. The results showed that EGCG reduced body weight, liver weight ratio, and triglyceride and total cholesterol levels in mice by decreasing the mRNA expression of genes related to fatty acid synthesis (Elov16) and cholesterol synthesis (CYP4A14) and increasing the mRNA expression of genes related to fatty acid oxidation (Lss) and cholesterol metabolism (Cyp7a1). In addition, EGCG normalized BPA-induced intestinal microbial dysbiosis.
View Article and Find Full Text PDFProthioconazole is a widely used chiral triazole fungicide, and its residue pollution has attracted wide attention in recent years. However, little is known about microbial metabolic processes of prothioconazole enantiomers. In this study, a prothioconazole-degrading strain, Sphingomonas sp.
View Article and Find Full Text PDF