Publications by authors named "Fangsen Cui"

Purpose: To investigate local hemodynamic changes resulting from elevated intraocular pressure (IOP) in different vasculature networks using a computational fluid dynamics model based on 3D reconstructed confocal microscopic images.

Methods: Three-dimensional rat retinal vasculature was reconstructed from confocal microscopy images using a 3D U-Net-based labeling technique, followed by manual correction. We conducted a computational fluid dynamics (CFD) analysis on different retinal vasculature networks derived from a single rat.

View Article and Find Full Text PDF

Guided wave (GW)-based techniques have been extensively investigated and applied in material characterization, damage detection, and structural health monitoring. A comprehensive understanding of GW is the cornerstone for the development of such techniques. Based on the semi-analytical finite element (SAFE) method, an open-source dispersion calculator of GW propagating in acoustoelastic and complex waveguides with both isotropic and anisotropic material properties is developed.

View Article and Find Full Text PDF

The visceral hybrid procedure combining retrograde visceral bypass grafting and completion endovascular stent grafting is a feasible alternative to conventional open surgical or wholly endovascular repairs of thoracoabdominal aneurysms (TAAA). However, the wide variability in visceral hybrid configurations means that a priori prediction of surgical outcome based on haemodynamic flow profiles such as velocity pattern and wall shear stress post repair remain challenging. We sought to appraise the clinical relevance of computational fluid dynamics (CFD) analyses in the setting of visceral hybrid TAAA repairs.

View Article and Find Full Text PDF

Accurate measurement of the material parameters of composite in a nondestructive manner is of great significance for evaluating mechanical performance. This study proposes to use a genetic algorithm (GA) to reconstruct the stiffness matrix of carbon fiber reinforced polymer (CFRP) with array-guided wave (GW)-based GA. By comparing the numerically calculated GW dispersion curves with the experimental wave number-frequency contour calculated with a two-dimensional Fourier transform (2D-FFT), the matching coefficient is directly obtained as the objective function of the GA, avoiding the overhead of sorting out the respective GW modes.

View Article and Find Full Text PDF

The COVID-19 pandemic has greatly changed workplace management. Most workplaces have adopted the work-from-home policy to minimize the risk of community spread. Consequently, housing estates remain largely occupied during office hours.

View Article and Find Full Text PDF

A covered stent has been used to treat carotid artery stenosis to reduce the chance of embolization, as it offers improved performance over bare-metal stents. However, membrane infolding of covered stents can affect efficiency and functionality for treating occlusive disease of first-order aortic branches. In order to mitigate the degree of infolding of the stent once it was re-expanded, we proposed a new coating method performed on the pre-crimped stent.

View Article and Find Full Text PDF

Current generation of bioresorbable coronary scaffolds (BRS) posed thrombogenicity and deployment issues owing to its thick struts and overall profile. To this end, we hypothesize that the use of nanocomposite materials is able to provide improved material properties and sufficient radial strength for the intended application even at reduced strut thickness. The nanocomposite formulations of tantalum dioxide (TaO), L-lactide functionalized (LA)-TaO, hydroxyapatite (HA) and LA-HA with poly-l-lactic acid (PLLA) were evaluated in this study.

View Article and Find Full Text PDF

Non-anatomical placement may occur during the surgical implantation of the meniscal implant, and its influence on the resulting biomechanics of the knee joint has not been systematically studied. The purpose of this study was to evaluate the biomechanical effects of non-anatomical placement of the meniscal implant on the knee joint during a complete walking cycle. Three-dimensional finite element (FE) analyses of the knee joint were performed, based on the model developed from magnetic resonance images and the loading conditions derived from the gait pattern of a healthy male subject, for the following physiological conditions: (i) knee joint with intact native meniscus, (ii) medial meniscectomized knee joint, (iii) knee joint with anatomically placed meniscal implant, and (iv) knee joint with the meniscal implant placed in four different in vitro determined non-anatomical locations.

View Article and Find Full Text PDF

The present study aimed to design and optimize thoracic aorta stent grafts (SGs) based on the influence of geometric parameters on flexibility and durability. Five geometric parameters were selected, including strut height, strut number, strut radius, wire diameter, and graft thickness. Subsequently, 16 finite element (FE) models were established with an orthogonal design consisting of five factors and four levels.

View Article and Find Full Text PDF

In an adhesively bonded structure, utilizing the adhesive itself for monitoring the joint integrity can be beneficial in reduction of labor, time, and potential human errors while avoiding problems associated with introduction of a foreign sensor component. This work started from the examination of effective piezoelectricity of commercial structural adhesives/sealants, and five of them were found to possess effective piezoelectric property, with effective piezoelectric coefficient d from -0.11 to -1.

View Article and Find Full Text PDF

To select animals of appropriate size for preclinical studies of cardiovascular devices, reference knowledge of the cardio- vascular anatomy relative to body weight is crucial. We measured the luminal diameters of the arteries (carotid, femoral, and iliac arteries) that are the common access vessels for endovascular and vascular procedures in Yorkshire × Landrace swine. Measurements were performed by using both ultrasound and angiographic methods and were correlated with body weight.

View Article and Find Full Text PDF

Adhesive bonded joints are frequently adopted in structural applications. The adhesive aging, low quality of surface preparation, as well as the exposure to external harsh environment and loading, may degrade the quality of adhesive, leading to disbond and decrease of the interfacial strength of the bonded joints. This study addresses both numerical and experimental investigations of ultrasonic guided wave (UGW) propagating in adhesive bonded metallic waveguide, whereby disbond detection is realized based on variation of the wave arrival time of UGW.

View Article and Find Full Text PDF

Unlabelled: Bare metal stenting (BMS) does not adequately address the atheroembolic characteristic of carotid artery stenosis. While simple covered stents (CS) may prevent dislodged fragments of the atherosclerotic plaque from entering the blood stream, they also block blood flow into the major branches of the artery alongside the lesion, which is not desirable. Preferential covered stents (PCS) behave as a covered stent in a tubular part of a vessel but maintain side-branch flow over the bifurcation region by means of slits in the membrane.

View Article and Find Full Text PDF

Stenting of curved arteries is more challenging than straight vessels. There has been an increasing need for new techniques to treat lesions in highly curved locations. One generic idea is to use curved stents to treat lesions in such curved locations.

View Article and Find Full Text PDF

Here, a prototypical metallic nanoglass is proposed as a new alloy for balloon expandable stents. Traditionally, the stainless steel SS 316L alloy has been used as a preferred material for this application due to its proper combination of mechanical properties, corrosion resistance, and biocompatibility. Recently, metallic glasses (MGs) have been considered as promising materials for biodevice applications.

View Article and Find Full Text PDF

To design a hooked self-expandable caval valve stent and determine the best crimping scenario for its percutaneous implantation in the Superior and Inferior Vena Cava (SVC & IVC) for the treatment of tricuspid regurgitation (TR). A hooked, Nitinol based stent design was modeled using SOLIDWORKS and finite element analysis (FEA) was carried out using ABAQUS. The Nitinol material used in this study was modeled in ABAQUS as superelastic-plastic.

View Article and Find Full Text PDF

Thoracic endovascular aortic repair (TEVAR) has been introduced as a less invasive approach to the treatment of thoracic aortic aneurysm (TAA). However, the effectiveness of TEVAR in the treatment of TAA is often limited due to the complex anatomy of aortic arch. Flow preservation at the three supra-aortic branches further increases the overall technical difficulty.

View Article and Find Full Text PDF

Functional and mechanical properties of novel biomaterials must be carefully evaluated to guarantee long-term biocompatibility and structural integrity of implantable medical devices. Owing to the combination of metallic bonding and amorphous structure, metallic glasses (MGs) exhibit extraordinary properties superior to conventional crystalline metallic alloys, placing them at the frontier of biomaterials research. MGs have potential to improve corrosion resistance, biocompatibility, strength, and longevity of biomedical implants, and hence are promising materials for cardiovascular stent applications.

View Article and Find Full Text PDF

Hypervelocity impact (HVI), ubiquitous in low Earth orbit with an impacting velocity in excess of 1 km/s, poses an immense threat to the safety of orbiting spacecraft. Upon penetration of the outer shielding layer of a typical two-layer shielding system, the shattered projectile, together with the jetted materials of the outer shielding material, subsequently impinge the inner shielding layer, to which pitting damage is introduced. The pitting damage includes numerous craters and cracks disorderedly scattered over a wide region.

View Article and Find Full Text PDF

Artificial meniscal implants may replace severely injured meniscus and restore the normal functionality of the knee joint. Implant material stiffness and shape influence the longevity of implantations. This study, using 3D finite element analysis, aimed to evaluate the effects of material stiffness variations of anatomically shaped artificial meniscal implant in the knee joint.

View Article and Find Full Text PDF

The emergence of bulk metallic glasses (BMGs) has been tantalizing in biomedical applications such as development of novel cardiovascular stents. Numerous investigations have confirmed the superior functional properties and biocompatibility of BMGs over conventional crystalline alloys as stent materials. However, a detailed understanding of the mechanical behavior of BMG-based stents during different stages of their application is still scarce.

View Article and Find Full Text PDF

Heterotopic implantation of transcatheter tricuspid valve is a new treatment option for tricuspid regurgitation. Transcatheter tricuspid valves are implanted onto the cavoatrial junction in order to avoid the challenging task of anchoring the valve onto the complex tricuspid valve annulus. However, little is known about optimum extent of oversizing of the valved stent in a vena cava.

View Article and Find Full Text PDF

Our group recently developed a novel covered carotid stent that can prevent emboli while preserving the external carotid artery (ECA) branch blood flow. However, our recent in vitro side-branch ECA flow preservation tests on the covered stents revealed the need for further stent frame design improvements, including the consideration to crimp the stent to a low profile for the delivery of the stent system and having bigger cells. Hence, the current work aims to design new bare metal stents with bigger cell size to improve the crimpability and to accommodate more slits so that the side-branch flow could be further increased.

View Article and Find Full Text PDF

Self-expandable stents are widely used to restore blood flow in a diseased artery segment by keeping the artery open after angioplasty. Despite the prevalent use of conventional crystalline metallic alloys, for example, nitinol, to construct self-expandable stents, new biomaterials such as bulk metallic glasses (BMGs) are being actively pursued to improve stent performance. Here, we conducted a series of analyses including finite element analysis and molecular dynamics simulations to investigate the feasibility of using a prototypical Zr-based BMG for self-expandable stent applications.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbo1hncidbtdcqt15pu0t56bdjtg81vto): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once