Publications by authors named "Fangrui Zhong"

Artificial photoenzymes with novel catalytic modes not found in nature are in high demand; yet, they also present significant challenges in the field of biocatalysis. In this study, a chemogenetic modification strategy is developed to facilitate the rapid diversification of photoenzymes. This strategy integrates site-specific chemical conjugation of various artificial photosensitizers into natural protein cavities and the iterative mutagenesis in cell lysates.

View Article and Find Full Text PDF

Small molecules with conformationally rigid, three-dimensional geometry are highly desirable in drug development, toward which a direct, simple-to-complexity synthetic logic is still of considerable challenges. Here, we report intermolecular aza-[2 + 2] photocycloaddition (the aza-Paternò-Büchi reaction) of indole that facilely assembles planar building blocks into ladder-shape azetidine-fused indoline pentacycles with contiguous quaternary carbons, divergent head-to-head/head-to-tail regioselectivity, and absolute exo stereoselectivity. These products exhibit marked three-dimensionality, many of which possess 3D score values distributed in the highest 0.

View Article and Find Full Text PDF

Selective labeling of the protein of interest (POI) in genetically unmodified live cells is crucial for understanding protein functions and kinetics in their natural habitat. In particular, spatiotemporally controlled installation of the labels on a POI under light control without affecting their original activity is in high demand but is a tremendous challenge. Here, we describe a novel ligand-directed photoclick strategy for spatiotemporally controlled labeling of endogenous proteins in live cells.

View Article and Find Full Text PDF

Glutathione peroxidase 4 (GPx4) is the membrane peroxidase in mammals that is essential for protecting cells against oxidative damage and critical for ferroptosis. However, no live cell probe is currently available to specifically label GPx4. Herein, we report both inhibitory and noninhibitory fluorescent turn-on probes for specific labeling of GPx4 in live cells.

View Article and Find Full Text PDF

A visible-light-induced radical -iodoallylation of CFCHN was developed under mild conditions, delivering a variety of α-CF-substituted homoallylic iodide compounds in moderate to excellent yields. The transformation features broad substrate scope, good functional group compatibility, and operational simplicity. The described protocol provides a convenient and attractive tool to apply CFCHN as CF-introduction reagent in radical synthetic chemistry.

View Article and Find Full Text PDF

Herein, we disclose the highly enantioselective oxidative cross-coupling of 3-hydroxyindole esters with various nucleophilic partners as catalyzed by copper efflux oxidase. The biocatalytic transformation delivers functionalized 2,2-disubstituted indolin-3-ones with excellent optical purity (90-99 % ee), which exhibited anticancer activity against MCF-7 cell lines, as shown by preliminary biological evaluation. Mechanistic studies and molecular docking results suggest the formation of a phenoxyl radical and enantiocontrol facilitated by a suited enzyme chiral pocket.

View Article and Find Full Text PDF

Multi-component reaction of higher degree ultilization of diazo molecules for polyene formation is highly intriuging but still underexplored. We present herein an unprecedented coupling of 2,2,2-trifluorodiazoethane and aryl alkynes mediated by iodine under visible light. The multi-component reaction involving two diazo units and two alkyne units provides a straightforward and step-economic access to bistrifluoromethylated 1,3,5-trienes in high stereoselectivity by creation of three C═C bonds in a single step under mild conditions.

View Article and Find Full Text PDF

Naturally evolved enzymes, despite their astonishingly large variety and functional diversity, operate predominantly through thermochemical activation. Integrating prominent photocatalysis modes into proteins, such as triplet energy transfer, could create artificial photoenzymes that expand the scope of natural biocatalysis. Here, we exploit genetically reprogrammed, chemically evolved photoenzymes embedded with a synthetic triplet photosensitizer that are capable of excited-state enantio-induction.

View Article and Find Full Text PDF

We report the molecular design of a novel multifunctional reagent and its application for light-controlled selective protein labeling. This molecule integrates functions of protein-ligand recognition, bioconjugation, ligand cleavage, and photoactivation by merging the photochemistries of 2-nitrophenylpropyloxycarbonyl and 3-hydroxymethyl-2-naphthol with an affinity ligand and fluorescein. Highly electrophilic -naphthoquinone methide was photochemically released and underwent proximity-driven selective labeling with the protein of interest (e.

View Article and Find Full Text PDF

Reported here is the first catalytic atroposelective electrophilic amination of indoles, which delivers functionalized atropochiral N-sulfonyl-3-arylaminoindoles with excellent optical purity. This reaction was furnished by 1,6-nucleophilic addition to p-quinone diimines. Control experiments suggest an ionic mechanism that differs from the radical addition pathway commonly proposed for 1,6-addition to quinones.

View Article and Find Full Text PDF

Enzymes with excellent catalytic performance play important roles in living organisms. Advances in strategies for enzyme chemical modification have enabled powerful strategies for exploring and manipulating enzyme functions and activities. Based on the development of chemical enzyme modifications, incorporating external stimuli-responsive features-for example, responsivity to light, voltage, magnetic force, pH, temperature, redox activity, and small molecules-into a target enzyme to turn "on" and "off" its activity has attracted much attention.

View Article and Find Full Text PDF

Natural products are usually highly complicated organic molecules with special scaffolds, and they are an important resource in medicine. Natural products with complicated structures are produced by enzymes, and this is still a challenging research field, its mechanisms requiring detailed methods for elucidation. Flavin adenine dinucleotide (FAD)-dependent monooxygenases (FMOs) catalyze many oxidation reactions with chemo-, regio-, and stereo-selectivity, and they are involved in the synthesis of many natural products.

View Article and Find Full Text PDF

Novel cinchona alkaloid derived iodide catalysts were developed for the enantioselective oxidative α-amination of 2-oxindoles, providing various functionalized spiropyrrolidine oxindoles in high yields and with good enantioselectivities. This iodide/ROOH catalytic system features a one-step synthesis of a catalyst with multiple functionalities, ease of operation, and good scalability, thereby enriching the repertoire of iodide catalysis for enantioselective oxidative coupling reactions.

View Article and Find Full Text PDF

In this study, a twisted macrocycle was synthesized via ring closure of a double-helical aromatic oligoamide foldamer with two disulfide bridges. Single-crystal X-ray structure and NMR spectroscopy demonstrate the twisted conformation of macrocycle both in the solid state and in solution. As a result of the rearrangement of hydrogen bonding preference, the twisted conformation could be transformed to boxlike through protonation of the pyridine segments of macrocycle.

View Article and Find Full Text PDF

Chiral photosensitizer-catalyzed stereoselective olefin cyclization has shown its significance in organic synthesis. In this work, we investigated the reaction mechanism, regioselectivity and stereoselectivity of photochemical intramolecular [2 + 2] cycloaddition reaction catalyzed by a chiral thioxanthone molecule using quantum chemical calculations. The reaction proceeded via an energy transfer from the triplet thioxanthone to the substrate, involving stepwise and sequential C-C bond formation.

View Article and Find Full Text PDF

Devising artificial photoenzymes for abiological bond-forming reactions is of high synthetic value but also a tremendous challenge. Disclosed herein is the first photobiocatalytic cross-coupling of aryl halides enabled by a designer artificial dehalogenase, which features a genetically encoded benzophenone chromophore and site-specifically modified synthetic Ni(bpy) cofactor with tunable proximity to streamline the dual catalysis. Transient absorption studies suggest the likelihood of energy transfer activation in the elementary organometallic event.

View Article and Find Full Text PDF

Herein, we present a hemin-catalyzed oxidative phenol-hydrazone [3+3] cycloaddition that accommodates a broad spectrum of -arylhydrazones, a class of less exploited 1,3-dipoles due to their significant Lewis basicity and weak tendency to undergo 1,2-prototropy to form azomethine imines. It renders expedient assembly of diversely functionalized 1,3,4-oxadiazines with excellent atom and step economy. Preliminary mechanistic studies point to the involvement of a one-electron oxidation pathway, which likely differs from the base-promoted aerobic oxidative scenario.

View Article and Find Full Text PDF

Reported herein is the first catalytic oxidative [4+2] cycloaddition of 2-aminophenols with cyclic enamines. This biomimetic catalytic oxidative strategy expediently accommodates the very labile structurally unbiased ortho-quinone monoimine intermediate for cycloaddition by controlling its formation rate, thus refraining from otherwise prerequisite steric or electronic stabilization and allowing efficient assembly of various tricyclic 1,4-benzoxazines in a step and atom economic fashion.

View Article and Find Full Text PDF

Reported herein is the first metal-free oxidative [4 + 2] coupling of -phenylenediamines with various alkenes. Differing from the known strategy that hinged on reactive π-allyl Pd intermediates from restrained allylic alcohol/acetate and diene substrates, this metal-free method features easy accessibility of starting materials, step economy, benign reaction conditions, and more importantly broad C-C double bonds (styrenes, vinyl (thio)ethers, benzofurans, indoles) with diastereospecificities. Mechanistic studies suggest the intermediacy of the benzoquinone diimides, a class of useful but yet underexploited synthons.

View Article and Find Full Text PDF

Manganese oxidizing bacteria can produce biogenic manganese oxides (BMO) on their cell surface and have been applied in the fields of agriculture, bioremediation, and drinking water treatment to remove toxic contaminants based on their remarkable chemical reactivity. Herein, we report for the first time the synthetic application of the manganese oxidizing bacteria, MnB1 as a whole-cell biocatalyst for the effective oxidation of β-keto ester with excellent yield. Differing from known chemical protocols toward this transformation that generally necessitate the use of organic solvents, stoichiometric oxygenating agents and complex chemical catalysts, our strategy can accomplish it simply under aqueous and mild conditions with higher efficiency than that provided by chemical manganese oxides.

View Article and Find Full Text PDF

Herein we report an iodine-catalyzed alkoxycyclization of tryptamine derivatives under mild reaction conditions. This method distinguished itself by providing a catalytic, one-step assembly of diversely functionalized C3a-alkoxypyrroloindolines as well as dihydrofuran and lactone fused indolines. Mechanistic studies suggest that an ionic pathway is operative and this probably accounts for the diastereospecificity of all isolated cycloadducts.

View Article and Find Full Text PDF

A hemin/H2O2 catalytic system for oxidative phenol-indole [3 + 2] coupling in aqueous solution has been developed, enabling benign synthesis of valuable benzofuroindolines under sustainable conditions. Mechanistic studies revealed the dual role of iron porphyrin responsible for both phenol oxidation and Lewis acid activation, which differs from the well-explored chemistry of hemin in carbene and nitrene insertion reactions. A preliminary experiment with cytochrome c showed that the turnover of iron porphyrin was amenable for a macromolecular setting with remarkable efficiency (ca.

View Article and Find Full Text PDF

The first synthetically useful interrupted Witkop oxidation has been disclosed through a radical triggered oxidative peroxycyclization of tryptamine derivatives, using a TBAI/TBHP catalytic system. This differs from known tryptophan oxidations, which typically cleave the 2,3-double bond. Upon one-pot reduction, this system renders an easy access to structurally distinct peroxypyrroloindoles, which are demonstrated to be useful precursors in various downstream synthetic elaborations.

View Article and Find Full Text PDF

Inspired by the heme iron-catalyzed radical insertion of dioxygen to the tryptophan indole ring, herein we utilize alkylperoxy radical species as a coupling partner to trigger a peroxycyclization of readily accessible tryptophan derivatives and enable the first synthesis of peroxypyrroloindolenines. A preliminary biological evaluation revealed promising anti-cancer activities (IC50 = 22.00 μM for compound 2a), and revealed that both the indolenine core and the peroxy functionality are responsible for the antiproliferation effect against Hela cell lines.

View Article and Find Full Text PDF

A novel synergistically catalyzed thia-aza-Prins cyclization of alkenylamines with disulfides is reported, rendering the first synthesis of sulfenylated 1,3-oxazinanes and oxazolidines in good to high yields. Importantly, DMSO serves simultaneously as a reaction medium and a surrogate for formaldehyde. Mechanistic studies provide evidence that actions of CuBr and in situ formed sulfinic acids as a Lewis acid and Brønsted acid catalyst, respectively, synergistically catalyze these cyclization processes.

View Article and Find Full Text PDF