The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs and revealed how quickly viral escape can curtail effective options. When the SARS-CoV-2 Omicron variant emerged in 2021, many antibody drug products lost potency, including Evusheld and its constituent, cilgavimab. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination and is challenging to replace with existing approaches.
View Article and Find Full Text PDFHIV capsid proteins (CAs) may self-assemble into a variety of shapes under in vivo and in vitro conditions. Here, we employed simulations based on a residue-level coarse-grained (CG) model with full conformational flexibility to investigate hexagonal lattices, which are the underlying structural pattern for CA aggregations. Facilitated by enhanced sampling simulations to rigorously calculate CA dimerization and polymerization affinities, we calibrated our model to reproduce the experimentally measured affinities.
View Article and Find Full Text PDFObjectives: The operative microscope (OM) has revolutionized the field of modern spine surgery, however, it remains limited by several drawbacks. Recently, the exoscope (EX) system has been designed to assistant spine surgery. It provides a three-dimensional (3D) high-definition (HD) operative experience and becomes an alternative to the OM.
View Article and Find Full Text PDFThe COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs, but also revealed how quickly viral escape can curtail effective options. With the emergence of the SARS-CoV-2 Omicron variant in late 2021, many clinically used antibody drug products lost potency, including Evusheld and its constituent, cilgavimab. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination and is challenging to replace with existing approaches.
View Article and Find Full Text PDFAlchemical free energy perturbation (FEP) is a rigorous and powerful technique to calculate the free energy difference between distinct chemical systems. Here we report our implementation of automated large-scale FEP calculations, using the Amber software package, to facilitate antibody design and evaluation. In combination with Hamiltonian replica exchange, our FEP simulations aim to predict the effect of mutations on both the binding affinity and the structural stability.
View Article and Find Full Text PDFBackground: Operative microscope (OM) has greatly advanced modern spine surgery, but remains limited by several drawbacks. Therefore, a three-dimensional (3D) high-definition (HD) exoscope (EX) (Kestrel View II, Mataka Kohli, Japan) system has been developed and used as an alternative to the OM. The aim of this study was to assess and compare the perioperative data and clinical outcomes of anterior cervical discectomy and fusion (ACDF) procedure with either an EX or OM.
View Article and Find Full Text PDFIt has been challenging to obtain reliable free energies for protein conformational changes from all-atom molecular dynamics simulations, despite the availability of many enhanced sampling techniques. To alleviate the difficulties associated with the enormous complexity of the conformational space, here we propose a few practical strategies for such calculations, including (1) a stringent method to examine convergence by comparing independent simulations starting from different initial coordinates, (2) adoption of multistep schemes in which the complete conformational change consists of multiple transition steps, each sampled using a distinct reaction coordinate, and (3) application of boundary restraints to simplify the conformational space. We demonstrate these strategies on the conformational changes between the outward-facing and outward-occluded states of the Mhp1 membrane transporter, obtaining the equilibrium thermodynamics of the relevant metastable states, the kinetic rates between these states, and the reactive trajectories that reveal the atomic details of spontaneous transitions.
View Article and Find Full Text PDFA rapid response is necessary to contain emergent biological outbreaks before they can become pandemics. The novel coronavirus (SARS-CoV-2) that causes COVID-19 was first reported in December of 2019 in Wuhan, China and reached most corners of the globe in less than two months. In just over a year since the initial infections, COVID-19 infected almost 100 million people worldwide.
View Article and Find Full Text PDFPartitioning of bioactive molecules, including drugs, into cell membranes may produce indiscriminate changes in membrane protein function. As a guide to safe drug development, it therefore becomes important to be able to predict the bilayer-perturbing potency of hydrophobic/amphiphilic drugs candidates. Toward this end, we exploited gramicidin channels as molecular force probes and developed and assays to measure drugs' bilayer-modifying potency.
View Article and Find Full Text PDFWe present a new approach to estimate the binding affinity from given three-dimensional poses of protein-ligand complexes. In this scheme, every protein-ligand atom pair makes an additive free-energy contribution. The sum of these pairwise contributions then gives the total binding free energy or the logarithm of the dissociation constant.
View Article and Find Full Text PDFJ Chem Inf Model
February 2019
Permeability and conductance are the major transport properties of membrane channels, quantifying the rate of channel crossing by the solute. It is highly desirable to calculate these quantities in all-atom molecular dynamics simulations. When the solute crossing rate is low, however, direct methods would require prohibitively long simulations, and one thus typically adopts alternative strategies based on the free energy of single solute along the channel.
View Article and Find Full Text PDFVitamin E is an essential micronutrient. The primary function of this lipid-soluble antioxidant is to protect membrane phospholipids from oxidation. Whether vitamin E preferentially interacts with polyunsaturated phospholipids to optimize protection of the lipid species most vulnerable to oxidative attack has been an unanswered question for a long time.
View Article and Find Full Text PDFHIV-1 capsid proteins (CAs) assemble into a capsid that encloses the viral RNA. The binding between a pair of C-terminal domains (CTDs) constitutes a major interface in both the CA dimers and the large CA assemblies. Here, we attempt to use a general residue-level coarse-grained model to describe the interaction between two isolated CTDs in Monte Carlo simulations.
View Article and Find Full Text PDFCalculating the kinetic rates for rare transitions is an important objective for molecular simulations. Here I prove equalities that relate the transition rates to the equilibrium free energy and the statistics of the transition paths. In particular, the durations of the transition paths within given intervals of the reaction coordinate provide the kinetic pre-factor in the rate formula.
View Article and Find Full Text PDFSpontaneous transitions between the native and non-native protein conformations are normally rare events that hardly take place in typical unbiased molecular dynamics simulations. It was recently demonstrated that such transitions can be well described by a reaction coordinate, Q, that represents the collective fraction of the native contacts between the protein atoms. Here we attempt to use this reaction coordinate to enhance the conformational sampling.
View Article and Find Full Text PDFThe orthoretroviral capsid protein (CA) assembles into polymorphic capsids, whose architecture, assembly, and stability are still being investigated. The N-terminal and C-terminal domains of CA (NTD and CTD, respectively) engage in both homotypic and heterotypic interactions to create the capsid. Hexameric turrets formed by the NTD decorate the majority of the capsid surface.
View Article and Find Full Text PDFProtein conformational change is of central importance in molecular biology. Here we demonstrate a computational approach to characterize the transition between two metastable conformations in all-atom simulations. Our approach is based on the finite temperature string method, and the implementation is essentially a generalization of umbrella sampling simulations with Hamiltonian replica exchange.
View Article and Find Full Text PDFWe show the construction of a novel coarse grain model for simulations of HIV capsid assembly based on four structural models of HIV capsid proteins: isolated hexamer 3H47.pdb, tubular assembly 3J34.pdb, isolated pentamer 3P05.
View Article and Find Full Text PDFBackground: During the maturation process, HIV capsid proteins self-assemble into polymorphic capsids. The strong polymorphism precludes high resolution structural characterization under in vivo conditions. In spite of the determination of structural models for various in vitro assemblies of HIV capsid proteins, the assembly mechanism is still not well-understood.
View Article and Find Full Text PDFMhp1 is a bacterial secondary transporter with high-resolution crystal structures available for both the outward- and inward-facing conformations. Through molecular dynamics simulations of the ligand-free Mhp1 as well as analysis of its crystal structures, here we show that two inter-helical loops, respectively located at the extra- and intracellular ends of the "hash motif" in the protein, play important roles in the conformational transition. In the outward- and inward-facing states of the protein, the loops adopt different secondary structures, either wrapped to the end of an alpha-helix, or unwrapped to extended conformations.
View Article and Find Full Text PDFCapsid protein (CA) is the building block of virus coats. To help understand how the HIV CA proteins self-organize into large assemblies of various shapes, we aim to computationally evaluate the binding affinity and interfaces in a CA homodimer. We model the N- and C-terminal domains (NTD and CTD) of the CA as rigid bodies and treat the five-residue loop between the two domains as a flexible linker.
View Article and Find Full Text PDFEnergetic interactions of a protein with lipid bilayers determine its propensity to reside in the membrane. Here we seek to evaluate the membrane interactions for EMAPII, a protein found to be released from the cell by unknown mechanisms, as well as several other proteins. Using a knowledge-based coarse-grained membrane potential, we calculate the free energy profiles for these proteins by integrating out the orientation degrees of freedom.
View Article and Find Full Text PDFIntrinsically disordered proteins (IDPs) often rely on electrostatic interactions to bind their structured targets. To obtain insight into the mechanism of formation of the electrostatic encounter complex, we investigated the binding of the peptide Sos (PPPVPPRRRR), which serves as a minimal model for an IDP, to the c-Crk N-terminal SH3 domain. Initially, we measured ¹⁵N relaxation rates at two magnetic field strengths and determined the binding shifts for the complex of Sos with wild-type SH3.
View Article and Find Full Text PDF