Secondary salinisation significantly compromises soil quality because of the over-application of chemical fertilisers. The combined application of biochar and microorganisms enhanced soil physicochemical properties and improved soil remediation efficiency. However, different types of biochar had varying effects on microbial growth and reproduction.
View Article and Find Full Text PDFViscosity is a crucial indicator of the flow state of proteins, lipids, and polysaccharides in the cell microenvironment and plays a vital role in maintaining normal cellular activities. Abnormal viscosity in any part of the cell constituents can lead to various diseases in the organism. For instance, abnormal mitochondrial viscosity can lead to diseases, such as diabetes and Parkinson's disease.
View Article and Find Full Text PDFPurification is an essential step in many polymerization processes for fabricating highly pure polymers. This study considered various purification methods for purifying the product of lignin, acrylamide (AM), and diallyl dimethylammonium chloride (DADMAC) copolymerization reactions at a laboratory scale. The charge density, yield, molecular weight, and solubility analyses confirmed that ethanol extraction and membrane filtration were the most effective processes for producing lignin-p(AM)-p(DADMAC).
View Article and Find Full Text PDFHypochlorous acid (HClO/ClO) is a key reactive oxidative species (ROS) in the body. The HClO/ClO concentrations are imbalanced during cancer formation due to the ROS stress response. This paper introduces a novel chitosan-based self-calibration fluorescent nanoprobe (ChCyNil) constructed by molecular assembly for the ratiometric detection of HClO/ClO.
View Article and Find Full Text PDFCellulose-based aerogels offer exceptional promise for oily wastewater treatment, but the challenge of low mechanical strength and limited application functions persists. Inspired by the graded porous structures in the animal skeleton and bamboo stem, we firstly report here a stepwise solvent diffusion-induced phase separation approach for constructing the gradient pore-density three-dimensional (3D) cellulose scaffold (GPDS). Benefiting from the regulation of competitive hydrogen bonding between the anti-solvents and the ionic liquid (IL) in cellulose solution, GPDS exhibits the decreased major channels size and increased minor pores amount gradually along the solvent diffusion direction.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
In general, Cu(II) is the critical factor in catalyzing reactive oxygen species (ROS) production and accelerating amyloid-β (Aβ) oligomer formation in Alzheimer's disease (AD). Natural chelating agents with good biocompatibility and appropriate binding affinity with Cu(II) have emerged as potential candidates for AD therapy. Herein, we tested the capability of guluronic acid disaccharide (Di-GA), a natural chelating agent with the moderate association affinity to Cu(II), in inhibiting ROS production and Aβ oligomer formation.
View Article and Find Full Text PDFThe high energy density and robust cycle properties of lithium-ion batteries contribute to their extensive range of applications. Polyolefin separators are often used for the purpose of storing electrolytes, hence ensuring the efficient internal ion transport. Nevertheless, the electrochemical performance of lithium-ion batteries is constrained by its limited interaction with electrolytes and poor capacity for cation transport.
View Article and Find Full Text PDFBiosens Bioelectron
September 2024
Alzheimer's disease (AD) is affecting more and more people worldwide without the effective treatment, while the existed pathological mechanism has been confirmed barely useful in the treatment. Amyloid-β peptide (Aβ), a main component of senile plaque, is regarded as the most promising target in AD treatment. Aβ clearance from AD brain seems to be a reliably therapeutic strategy, as the two exited drugs, GV-971 and aducanumab, are both developed based on it.
View Article and Find Full Text PDFHigh-performance electrical Joule heaters with high mechanical properties, low driving voltage, rapid response, and flexibility are highly desirable for portable thermal management. Herein, by using aligned bacterial cellulose (BC) and silver nanowire (AgNW), we fabricated a novel film heater based on Joule heating phenomena. The aligned BC film prepared by stretching BC hydrogel and hot-pressing drying technology showed outstanding mechanical properties and flexibility.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2024
NH is a common raw material used in the production of pesticides and has good water solubility, so it may contaminate water sources and eventually enter living organisms, causing serious health problems. Viscosity is an important indicator of the cellular microenvironment and an early warning signal for many diseases. The high reactivity of hydrazine depletes glutathione (GSH) in hepatocytes, causing oxidative stress ultimately leading to significant changes in intracellular viscosity and even death.
View Article and Find Full Text PDFExploiting effective, stable, and cost-efficient electrocatalysts for the water oxidation reaction is highly desirable for renewable energy conversion techniques. Constructional design and compositional manipulation are widely used approaches to efficaciously boost the electrocatalytic performance. Herein, we designed a NiFe-bimetallic sulfide/N-doped carbon composite a two-step thermal treatment of Prussian blue analogues/cellulose nanofibers (PBA/CNFs) film.
View Article and Find Full Text PDFHydrogen peroxide (HO) is a reactive oxygen species (ROS) that can be used as a marker for the occurrence of oxidative stress in the organism. Lysosomes serve as intracellular digestive sites, and when the concentration of HO in them is abnormal, lysosomal function is often impaired, leading to the development of diseases. Hydrogen sulfide (HS) acts as a gaseous signaling molecule that scavenges HO from cells and tissues, thereby maintaining the redox environment of the body.
View Article and Find Full Text PDFAlthough a promising method for lignin depolymerization, photocatalysis faces the challenge of low efficiency. In this study, MoS/ZnO heterojunction catalysts, endowed with piezocatalysis and photocatalytic capabilities, were crafted through Zn ion intercalation for the depolymerization of phenoxyphenylethanol (PP-ol) and alkali lignin. Then, the synergistic interplay between ultrasonic-induced piezoelectric fields and heterojunctions was analyzed.
View Article and Find Full Text PDFIndustrial lignin, a by-product of pulping for papermaking fibers or of second-generation ethanol production, is primarily served as a low-grade combustible energy source. The fabrication of high-value-added functional materials with industrial lignin is still a challenge. Herein, a three-dimensional hierarchical lignin-derived porous carbon (HLPC) was prepared with lignosulfonate as the carbon source and MgCO as the template.
View Article and Find Full Text PDFNitrification inhibitor is essential for increasing the nitrogen utilization efficiency of agricultural plants, thus reducing environmental pollution and increasing crop yield. However, the easy volatilization and limited functional property is still the bottleneck of nitrification inhibitors. Herein, a novel water-soluble polymeric nitrification inhibitor was synthesized through the copolymerization of acrylamide and bio-based acrylic acid, which was synthesized from biomass-derived furfural, and the complexation of carboxyl groups and 3,4-dimethylpyrazole.
View Article and Find Full Text PDFAs a biomarker of oxidative stress, hydrogen peroxide (HO) plays a complex role in organisms, including regulating cell signaling, respiration, the immune system, and other life processes. Therefore, it is important to develop a tool that can simply and effectively monitor HO levels in organisms and the environment. In this work, naphthalene fluorophores with a borate structure were introduced into chitosan (CTS) azide, and a CTS-based fluorescence sensor (CTS-HP) was designed for sensitive HO detection.
View Article and Find Full Text PDFLithium-sulfur (Li-S) batteries have gained considerable attention for high theoretical specific capacity and energy density. However, their development is hampered by the poor electrical conductivity of sulfur and the shuttle of polysulfides. Herein, the acidified bamboo-structure carbon nanotubes (BCNTs) were mixed with polyvinylidene difluoride and pyrolyzed at high-temperature to obtain the fluorinated bamboo-structure carbon nanotubes (FBCNTs), which were compounded with sulfur as the cathode.
View Article and Find Full Text PDFA large number of fresh fruits are wasted in the supply chain due to spoilage, so it is crucial to develop fruit preservation materials. Herein, two novel Ag-MOFs/carboxymethyl filter paper (Ag-MOFs/CMFP) composites were successfully synthesized by in situ facile synthesis, which can be used as packaging materials to delay fruit spoilage. The synthesis process is simple and environmentally friendly, and the reaction conditions are mild.
View Article and Find Full Text PDFStructural design and morphology engineering are considered significant strategies to boost the catalytic performance of electrocatalysts toward the oxygen evolution reaction. Inspired by the natural porosity and abundant functional groups, herein, hollow N-doped carbon nano-mushroom (NCNM) encapsulated hybrid sulfide particles rooted into a carbonized wood (CW) framework were prepared through simple impregnation followed by calcination. The as-prepared self-supporting electrodes present ultrahigh activity and robust stability.
View Article and Find Full Text PDFTraditional paper-based packaging commonly needs to be coated to achieve sufficient mechanical and barrier performances. In this research, a bio-based coating for paper was developed from carbamate starch (Sc), calcium lignosulfonate (CL), and cellulose nanofibrils (CNF). Controlling the electrostatic and hydrogen-bonding interactions among the components of the coating was conducive to tailoring the structure and performance of the coated paper.
View Article and Find Full Text PDFN-doping is a very useful method to improve the electrochemical performance of porous carbon (PC) materials. In this study, the potential of furfural residue (FR), a solid waste in furfural production, as a precursor to producing PC materials for supercapacitors was highlighted. To obtain an N-doped PC with a high specific surface area (SSA) and hierarchical porous structure, the urea-KOH synergistic activation method was proposed.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2024
Cysteine (Cys) is a sulfur-containing amino acid that plays an important role in living systems. The most common way to supplement the body with exogenous Cys is through the consumption of Cys-rich foods. Therefore, it is important to detect and analyze Cys in living systems and food samples.
View Article and Find Full Text PDFInt J Biol Macromol
December 2023
To improve the antimicrobial ability of MoS-containing films, we used lignin and triple-frequency ultrasound for liquid-phase exfoliation (LPE) to obtain MoS nanosheets. Photoresponsive antimicrobial films with MoS nanosheets, lignin, polyvinyl alcohol and deep eutectic solvents were subsequently prepared. Lignin functionalized the MoS nanosheets by chemically linking with S in MoS and significantly improved the exfoliation efficiency.
View Article and Find Full Text PDF