Publications by authors named "Fangna Gu"

Designing catalysts to proceed with catalytic reactions along the desired reaction pathways, e.g., CO methanation, has received much attention but remains a huge challenge.

View Article and Find Full Text PDF

Objective: To investigate the clinical outcomes and prognostic factors of refractory/relapsed acute myeloid leukemia (AML) patients who received allogeneic hematopoietic stem cell transplantation (allo-HSCT).

Methods: The clinical data of 80 refractory/relapsed AML patients who received allo-HSCT from December 2013 to June 2020 were retrospectively analyzed, including the overall survival (OS) rate, disease-free survival (DFS) rate, relapse rate, incidence of transplant-related mortality (TRM), and the related risk factors were explored.

Results: Hematopoietic reconstitution was obtained in all 80 patients after transplantation, the 3-year OS and DFS rates were (48.

View Article and Find Full Text PDF

This work demonstrates the efficient hydrogenolysis of cellulose to C4-C7 alcohols and gas products (reaction 1) by coupling it with the reforming reaction of methanol (reaction 2) over bi-functional CuO-based catalysts. In this process, the CuO-based catalysts catalyze both the reactions 1 and 2, and the in situ regenerated H2 in the reaction 2 is used for the reaction 1. A series of CuO-MO/Al2O3 (M=Ce, Mg, Mn, Ni, Zn) catalysts were prepared by the co-precipitation method.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) remains highly fatal, highlighting the need for improved understanding of signal pathways that can lead to the development of new therapeutic regimens targeting common molecular pathways shared across different AML subtypes. Here we demonstrate that astrocyte elevated gene-1 (AEG-1) is one of such pathways, involving in cell cycle and apoptosis regulation and contributing to enhanced proliferation and chemoresistance in HL-60 and U937 AML cells. The pleiotropic effects of AEG-1 on AML were found to correlate with two novel target genes, Aurora kinase A (AURKA) and Akt1.

View Article and Find Full Text PDF