Osteoarthritis (OA) is the most common degenerative disorder, affecting approximately half of the elderly population. In this study, we find that the expressions of long noncoding RNA (lncRNA) IGFBP7-OT and its maternal gene, IGFBP7, are upregulated and positively correlated in osteoarthritic cartilage. Overexpression of IGFBP7-OT significantly inhibits chondrocyte viability, promotes chondrocyte apoptosis, and reduces extracellular matrix components, whereas IGFBP7-OT knockdown has the opposite effects.
View Article and Find Full Text PDFOsteoporosis is a metabolic disorder characterized by low bone mass and deteriorated microarchitecture, with an increased risk of fracture. Some miRNAs have been confirmed as potential modulators of osteoblast differentiation to maintain bone mass. Our miRNA sequencing results showed that miR-664-3p was significantly down-regulated during the osteogenic differentiation of the preosteoblast MC3T3-E1 cells.
View Article and Find Full Text PDFObjectives: Following a specific number of mitotic divisions, primary chondrocytes undergo proliferative senescence, thwarting efforts to expand sufficient populations in vitro suitable to meet the needs of scientific research or medical therapies. Therefore, the human telomerase reverse transcriptase (TERT) was used to immortalize human chondrocyte and establish a cell line that escape from cellular senescence.
Results: The human chondrocytes were successfully immortalized by ectopic stable expression of TERT.
: Human jaw bone marrow mesenchymal stem cells (h-JBMMSCs) are multipotent progenitor cells with osteogenic differentiation potential. MicroRNAs (miRNAs) have emerged as crucial modulators of osteoblast differentiation. In this study, we focus on the role of and its target protein in osteoblast differentiation of h-JBMMSCs.
View Article and Find Full Text PDFOsteoarthritis (OA) is a chronic joint disease and hard to cure at present. Alpha B-crystallin (CRYAB) has been identified as a downregulated gene in OA cartilage. However, the precise roles and underlying molecular mechanisms of CRYAB in OA progression have not been elucidated.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have been widely studied in the field of regenerative medicine with the potential to solve osteoporosis. Paired box 2 (Pax2), as a transcription factor, is the master regulator of embryogenesis and oncogenesis. However, the function of Pax2 in osteogenesis is unknown.
View Article and Find Full Text PDF