Background & Aims: Chronic overconsumption of a high-carbohydrate diet leads to steatosis and its associated metabolic disorder and, eventually, to non-alcoholic fatty liver disease. Carbohydrate-responsive element binding protein (ChREBP) and insulin regulate de novo lipogenesis from glucose. Herein, we studied the effect of reticulon-4 (Nogo) expression on diet-induced metabolic disorders in mice.
View Article and Find Full Text PDFBackground And Purpose: Intrahepatic cholestasis is mainly caused by dysfunction of bile secretion and has limited effective treatment. Rosiglitazone is a synthetic agonist of PPARγ, whose endogenous agonist is 15-deoxy-Δ -PGJ (15d-PGJ ). Reticulon 4B (Nogo-B) is the detectable Nogo protein family member in the liver and secreted into circulation.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is a fast-growing chronic liver disease worldwide which can lead to liver cirrhosis. Peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor, plays an important role in lipogenesis. Increased Nogo-B expression can be determined in the liver of cirrhosis patients.
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2015
A simple and environmentally friendly self-assembly process of oppositely charged polymer PEI and inorganic oxide SiO2 was demonstrated for the construction of an ultrathin layer on the surface of PE separator. The XPS, FT-IR, SEM, and EDS characterizations give clear evidence of the successful self-assembly of PEI and SiO2 without significantly increasing the thickness and sacrificing the pristine porous structure of PE separator. This process improves a variety of crucial properties of PE separator such as the electrolyte wetting, the electrolyte uptake, the thermal stability, the ionic conductivity, Li+ transference number, the electrochemical stability and the compatibility with lithium electrode, endowing lithium-ion battery (Li as anode and LiCoO2 as cathode) with excellent capacity retention at high C-rates and superior cycling performance.
View Article and Find Full Text PDFTwo analogous multipolar chromophores (1 and 2) that contained 2,3,8-trisubstituted indenoquinoxaline moieties have been synthesized and characterized for their two-photon absorption properties, both in the femtosecond and nanosecond time regimes. We demonstrated that their multi-branched framework structures, which incorporated appropriately functionalized indenoquinoxaline units, afforded large molecular nonlinear absorptivities within the studied spectroscopic range. Effective optical-power-limiting and stabilization behaviors in the nanosecond regime of dye molecule (2) were also investigated and the results indicated that such a structural motif could be a useful approach to the molecular design of highly active two-photon systems for quick-response and related broadband optical-suppressing applications, in particular for confronting laser pulses of a long duration.
View Article and Find Full Text PDF