Publications by authors named "Fanglin Bao"

The resolution of optical imaging is limited by diffraction as well as detector noise. However, thermal imaging exhibits an additional unique phenomenon of ghosting which results in blurry and low-texture images. Here, we provide a detailed view of thermal physics-driven texture and explain why it vanishes in thermal images capturing heat radiation.

View Article and Find Full Text PDF

Machine perception uses advanced sensors to collect information about the surrounding scene for situational awareness. State-of-the-art machine perception using active sonar, radar and LiDAR to enhance camera vision faces difficulties when the number of intelligent agents scales up. Exploiting omnipresent heat signal could be a new frontier for scalable perception.

View Article and Find Full Text PDF

Imaging point sources with low angular separation near or below the Rayleigh criterion are important in astronomy, e.g., in the search for habitable exoplanets near stars.

View Article and Find Full Text PDF

Optical nanoantennas can convert propagating light to local fields. The local-field responses can be engineered to exhibit nontrivial features in spatial, spectral and temporal domains, where local-field interferences play a key role. Here, we design nearly fully controllable local-field interferences in the nanogap of a nanoantenna, and experimentally demonstrate that in the nanogap, the spectral dispersion of the local-field response can exhibit tuneable Fano lineshapes with nearly vanishing Fano dips.

View Article and Find Full Text PDF

When an emitter is close to a plasmonic nanoantenna, besides coupling to the dipolar antenna mode, the emitter also considerably couples to a superposition of the high-order modes, referred to as a pseudomode. We comprehensively investigate the differences between the dipolar mode channel and the pseudomode channel in a representative system where a dipole emitter couples to a silver nanorod. The two channels are shown to be distinct in their mechanisms, characteristics (including chromatic dispersion and field distribution), and dependences on system parameters (including emitter-antenna distance, antenna geometry, and material loss).

View Article and Find Full Text PDF

Coupling modes between surface plasmon polaritons (SPPs) and surface phonon polaritons (SPhPs) play a vital role in enhancing near-field thermal radiation but are relatively unexplored, and no experimental result is available. Here, we consider the NFTR enhancement between two identical graphene-covered SiO heterostructures with millimeter-scale surface area and report an experimentally record-breaking ∼64-fold enhancement compared to blackbody (BB) limit at a gap distance of 170 nm. The energy transmission coefficient and radiation spectra show that the physical mechanism behind the colossal enhancement is the coupling between the surface plasmon and phonon polaritons.

View Article and Find Full Text PDF

We propose a scheme for transporting nanoparticles immersed in a fluid, relying on quantum vacuum fluctuations. The mechanism lies in the inhomogeneity-induced lateral Casimir force between a nanoparticle and a gradient metasurface and the relaxation of the conventional Dzyaloshinskiǐ-Lifshitz-Pitaevskiǐ constraint, which allows quantum levitation for a broader class of material configurations. The velocity for a nanosphere levitated above a grating is calculated and can be up to a few microns per minute.

View Article and Find Full Text PDF

A graphene-assisted hBN/SiO hybrid structure is proposed and demonstrated to enhance near-field thermal radiation (NFTR). Due to the complementarity between the hyperbolic phonon polaritons of hBN and the surface phonon polaritons of SiO at mid-infrared frequencies, coupling modes can remarkably improve the photon tunneling probability over a broad frequency band, especially when assisted by the surface plasmon polaritons of graphene sheets. Thus, the heat flux can exceed the blackbody limit by 4 orders of magnitude at a separation distance of 10 nm and reach 97% of the infinite limit of graphene-hBN multilayers using only two layers with a thickness of 20 nm each.

View Article and Find Full Text PDF

Plasmon-emitter hybrid nanocavity systems exhibit strong plasmon-exciton interactions at the single-emitter level, showing great potential as testbeds and building blocks for quantum optics and informatics. However, reported experiments involve only one addressable emitting site, which limits their relevance for many fundamental questions and devices involving interactions among emitters. Here we open up this critical degree of freedom by demonstrating selective far-field excitation and detection of two coupled quantum dot emitters in a U-shaped gold nanostructure.

View Article and Find Full Text PDF

Inspired by the branch cut that can link two Riemann sheets in complex function theory, we utilize the branch cut to mimic an electromagnetic 'wormhole' linking two 2D 'parallel spaces' in a reference space. With the help of optical conformal mapping, we design a time-varying inhomogeneous medium that can effectively perform like an electromagnetic 'wormhole' in the real space. Based on this method, we can simulate the evolutionary process of an electromagnetic 'wormhole' and the wave propagation from one space to another in a laboratory environment.

View Article and Find Full Text PDF

The effect of nonlocal optical response is studied for a novel silicon hybrid plasmonic waveguide (HPW). Finite element method is used to implement the hydrodynamic model and the propagation mode is analyzed for a hybrid plasmonic waveguide of arbitrary cross section. The waveguide has an inverted metal nano-rib over a silicon-on-insulator (SOI) structure.

View Article and Find Full Text PDF