Publications by authors named "Fanglian Chen"

Article Synopsis
  • The study aimed to explore the connection between aging-related genes (ARGs) and Major Depressive Disorder (MDD) by analyzing data from multiple sources and utilizing machine learning techniques.
  • Researchers identified eight differentially expressed ARGs (ARG-DEGs) linked to MDD, which were further narrowed down to four key ARG-DEGs: MMP9, IL7R, S100B, and EGF, focusing on their roles in various biological pathways.
  • Immune cell analysis showed significant differences in immune system activity between MDD patients and healthy controls, and a risk prediction model was created based on the key ARG-DEGs to enhance understanding and future research on depression.
View Article and Find Full Text PDF

Background: Stem cell-derived extracellular vesicles (SCEVs) have emerged as a potential therapy for hemorrhagic stroke. However, their effects are not fully understood. The aim of this study was to comprehensively evaluate the effects of SCEVs therapy in rodent models of hemorrhagic stroke, including subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH).

View Article and Find Full Text PDF

Ischemic stroke (IS) is a debilitating neurological disorder with limited treatment options. Extracellular vesicles (EVs) have emerged as crucial lipid bilayer particles derived from various cell types that facilitate intercellular communication and enable the exchange of proteins, lipids, and genetic material. Microglia are resident brain cells that play a crucial role in brain development, maintenance of neuronal networks, and injury repair.

View Article and Find Full Text PDF

With the rapidly aging human population, age-related cognitive decline and dementia are becoming increasingly prevalent worldwide. Aging is considered the main risk factor for cognitive decline and acts through alterations in the composition of the gut microbiota, microbial metabolites, and the functions of astrocytes. The microbiota-gut-brain axis has been the focus of multiple studies and is closely associated with cognitive function.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of human-induced pluripotent stem cell-derived neural stem cell exosomes (hiPSC-NSC-Exos) in protecting the blood-brain barrier after intracerebral hemorrhage, a condition that can lead to poor patient outcomes.
  • Results showed that intranasal administration of hiPSC-NSC-Exos improved neurological function, strengthened blood-brain barrier integrity, and reduced inflammation in mice, highlighting their therapeutic potential.
  • The mechanism revealed that hiPSC-NSC-Exos activated the PI3K/AKT signaling pathway in astrocytes, which led to decreased secretion of inflammatory proteins like monocyte chemoattractant protein-1, ultimately aiding in barrier preservation
View Article and Find Full Text PDF

Background: Vascular dementia (VaD), the second most prevalent type of dementia, lacks a well-defined cause and effective treatment. Our objective was to utilize bioinformatics analysis to discover the fundamental disease-causing genes and pathological mechanisms in individuals diagnosed with VaD.

Methods: To identify potential pathogenic genes associated with VaD, we conducted weighted gene co-expression network analysis (WGCNA), differential expression analysis, and protein-protein interaction (PPI) analysis.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how long-term exposure to polysorbate 80 (P80), an emulsifier in food and pharmaceuticals, affects gut microbiota and cognitive function in aging mice.
  • - Results show that P80 intake worsened cognitive decline and led to increased brain pathology, gut microbiota imbalance, and changes in bile acid metabolism in the mice.
  • - The findings suggest that P80-induced gut dysbiosis and related metabolic changes may disrupt the intestinal and blood-brain barriers, contributing to neuroinflammation and accelerated cognitive decline in aging individuals.
View Article and Find Full Text PDF

Traumatic brain injury (TBI) can induce systemic coagulopathy and inflammation, thereby increasing the risk of mortality and disability. However, the mechanism causing systemic coagulopathy and inflammation following TBI remains unclear. In prior research, we discovered that brain-derived extracellular vesicles (BDEVs), originating from the injured brain, can activate the coagulation cascade and inflammatory cells.

View Article and Find Full Text PDF

JOURNAL/nrgr/04.03/01300535-202409000-00033/figure1/v/2024-01-16T170235Z/r/image-tiff We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury. However, its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.

View Article and Find Full Text PDF

Interleukin 33 (IL-33) belongs to the IL-1 family and is localized in the nucleus. IL-33 is primarily composed of three distinct domains, namely the N-terminal domain responsible for nuclear localization, the intermediate sense protease domain, and the C-terminal cytokine domain. Its specific receptor is the suppression of tumorigenicity 2 (ST2), which is detected in serum-stimulated fibroblasts and oncogenes.

View Article and Find Full Text PDF

Background: Neuroinflammation is one of the most important pathogeneses in secondary brain injury after traumatic brain injury (TBI). Neutrophil extracellular traps (NETs) forming neutrophils were found throughout the brain tissue of TBI patients and elevated plasma NET biomarkers correlated with worse outcomes. However, the biological function and underlying mechanisms of NETs in TBI-induced neural damage are not yet fully understood.

View Article and Find Full Text PDF

Small extracellular vesicles(sEVs), a subset of extracellular vesicles with a bilateral membrane structure, contain biological cargoes, such as lipids, nucleic acids, and proteins. sEVs are crucial mediators of intercellular communications in the physiological and pathological processes of the central nervous system. Because of the special structure and complex pathogenesis of the brain, central nervous system disorders are characterized by high mortality and morbidity.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is the most common neurodegenerative disease. Mitochondrial dysfunction and immune responses are important factors in the pathogenesis of AD, but their crosstalk in AD has not been studied. In this study, the independent role and interaction of mitochondria-related genes and immune cell infiltration in AD were investigated using bioinformatics methods.

View Article and Find Full Text PDF

Endoplasmic reticulum (ER) stress and ER stress-mediated apoptosis play an important role during secondary brain damage after traumatic brain injury (TBI). Increased neutrophil extracellular traps (NETs) formation has been demonstrated to be associated with neurological damage after TBI. However, the correlation between ER stress and NETs remains unclear, and the specific function of NETs in neurons has not been defined.

View Article and Find Full Text PDF

Intermittent hypoxia is the best predictor of developing cognitive decline and Alzheimer's disease progression in patients with obstructive sleep apnea. The nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome has been poorly studied as a regulator of neuroinflammation in cognitive impairment caused by intermittent hypoxia. As critical inflammatory cells, exosomes secreted by microglia have been found to affect the spread of pathologic proteins and neuropathology in neurodegenerative diseases.

View Article and Find Full Text PDF

Neural inflammatory response is a crucial pathological change in intracerebral hemorrhage (ICH) which accelerates the formation of perihematomal edema and aggravates neural cell death. Although surgical and drug treatments for ICH have advanced rapidly in recent years, therapeutic strategies that target and control neuroinflammation are still limited. Exosomes are important carriers for information transfer among cells.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is an important reason of neurological damage and has high morbidity and mortality rates. The secondary damage caused by TBI leads to a poor clinical prognosis. According to the literature, TBI leads to ferrous iron aggregation at the site of trauma and may be a key factor in secondary injury.

View Article and Find Full Text PDF
Article Synopsis
  • Increased formation of neutrophil extracellular traps (NETs) has been linked to worse outcomes in traumatic brain injury (TBI), but their exact role in neuron death isn't fully understood.
  • The study involved analyzing brain and blood samples from TBI patients, modeling brain injury in mice, and testing treatments to reduce NET formation to assess effects on neuron death and function.
  • Results showed that elevated NET levels in TBI patients correlated with higher intracranial pressure and neurological issues; inhibiting NETs improved outcomes in mice and affected specific pathways relating to neuron death.
View Article and Find Full Text PDF

Background And Purpose: Neuroinflammation has been shown to play a critical role in secondary craniocerebral injury, leading to poor outcomes for TBI patients. Abrocitinib, a Janus kinase1 (JAK1) selective inhibitor approved to treat atopic dermatitis (AD) by the Food and Drug Administration (FDA), possesses a novel anti-inflammatory effect. In this study, we investigated whether abrocitinib could ameliorate neuroinflammation and exert a neuroprotective effect in traumatic brain injury (TBI) models.

View Article and Find Full Text PDF

Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with exposure to repetitive head impacts, which is susceptible in elderly people with declined mobility, athletes of full contact sports, military personnel and victims of domestic violence. It has been pathologically diagnosed in brain donors with a history of repetitive mild traumatic brain injury (rmTBI), but cannot be clinically diagnosed for a long time. By the continuous efforts by neuropathologists, neurologists and neuroscientists in recent 10 years, an expert consensus for the diagnostic framework of CTE was proposed in 2021 funded by the National Institute of Neurological Disorders and Stroke.

View Article and Find Full Text PDF

Although there are still no satisfactory answers to the question of why we need to sleep, a better understanding of its function will help to improve societal attitudes toward sleep. Sleep disorders are very common in neurodegenerative diseases and are a key factor in the quality of life of patients and their families. Alzheimer's disease (AD) is an insidious and irreversible neurodegenerative disease.

View Article and Find Full Text PDF

The incidence of repetitive mild traumatic brain injury (rmTBI), one of the main risk factors for predicting neurodegenerative disorders, is increasing; however, its underlying mechanism remains unclear. As suggested by several studies, ferroptosis is possibly related to TBI pathophysiology, but its effect on rmTBI is rarely studied. Mesenchymal stromal cells (MSCs), the most studied experimental cells in stem cell therapy, exert many beneficial effects on diseases of the central nervous system, yet evidence regarding the role of MSCs in ferroptosis and post-rmTBI neurodegeneration is unavailable.

View Article and Find Full Text PDF

Neuroinflammation and the NACHT, LRR, and PYD domains-containing protein 3 inflammasome play crucial roles in secondary tissue damage following an initial insult in patients with traumatic brain injury (TBI). Maraviroc, a C-C chemokine receptor type 5 antagonist, has been viewed as a new therapeutic strategy for many neuroinflammatory diseases. We studied the effect of maraviroc on TBI-induced neuroinflammation.

View Article and Find Full Text PDF

Background: Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) is associated with neuroinflammation and subsequent cell death following traumatic brain injury (TBI). The sigma-1 receptor (Sig-1R) acts as a dynamic pluripotent modulator of fundamental cellular processes at the mitochondria-associated membranes (MAMs). The activation of Sig-1R is neuroprotective in a variety of central nervous system diseases, but its impact on ER stress induced by traumatic brain injury is not known.

View Article and Find Full Text PDF

Mild traumatic brain injury (mTBI) has a relatively higher incidence in aging people due to walking problems. Cranial computed tomography and magnetic resonance imaging provide the standard diagnostic tool to identify intracranial complications in patients with mTBI. However, it is still necessary to further explore blood biomarkers for evaluating the deterioration risk at the early stage of mTBI to improve medical decision-making in the emergency department.

View Article and Find Full Text PDF