The offshore ocean heat supplied to the Antarctic continental shelves by warm eddies has the potential to greatly impact the melting rates of ice shelves and subsequent global sea level rise. While featured in modeling and some observational studies, the processes around how these warm eddies form and overcome the dynamic sub-surface barrier of the Antarctic Slope Front over the upper continental slope has not yet been clarified. Here we report on the detailed observations of persistent eddies carrying warm modified Circumpolar Deep Water (CDW) onto the continental shelf of Prydz Bay, East Antarctica, using subsurface mooring and hydrographic section data from 2013-2015.
View Article and Find Full Text PDFSci Total Environ
September 2023
Understanding the spatial and temporal variations of atmospheric mercury (Hg) in the marine boundary layer could advance our knowledge on ocean evasion of Hg. Here, we conducted continuous measurements of total gaseous mercury (TGM) in the marine boundary layer during a round-the-world cruise from August 2017 to May 2018. We observed the highest and lowest TGM concentrations in Southern Indian Ocean (1.
View Article and Find Full Text PDFIt has been proven that marine heatwaves (MHWs) have increased in frequency, duration, and intensity over the past few decades, and this trend will accelerate further under continued global warming. While more intense and frequent MHWs are an expected consequence of rising sea surface temperatures (SSTs) under continued global warming, it remains unclear to what degree per Celsius warming trend of SSTs contributes to the changes in the MHW metrics. Here, we focus on how the MHW metrics evolve with the SST warming trend by using an adaptive data analysis method based on observational datasets covering the past four decades.
View Article and Find Full Text PDFArctic near-surface air temperature warms much faster than the global average, a phenomenon known as Arctic Amplification. The change of the underlying Arctic Ocean could influence climate through its interaction with sea ice, atmosphere, and the global ocean, but it is less well understood. Here, we show that the upper 2000 m of the Arctic Ocean warms at 2.
View Article and Find Full Text PDFTropical Pacific decadal variability (TPDV) and its mechanisms are essential for understanding long-term variations in global climate. The spatiotemporal pattern of this decadal variation has yet to be clarified. Here, on the basis of observational data with the help of the adaptive data analysis method, we extracted and investigated the spatiotemporal evolution of the tropical Pacific decadal variability in upper ocean heat content (UOHC) and thermocline depth.
View Article and Find Full Text PDFProc Math Phys Eng Sci
October 2021
For epidemics such as COVID-19, with a significant population having asymptomatic, untested infection, model predictions are often not compatible with data reported only for the cases confirmed by laboratory tests. Additionally, most compartmental models have instantaneous recovery from infection, contrary to observation. Tuning such models with observed data to obtain the unknown infection rate is an ill-posed problem.
View Article and Find Full Text PDFThe global ocean has absorbed approximately 30% of anthropogenic CO since the beginning of the industrial revolution. However, the spatiotemporal evolution of this important global carbon sink varies substantially on all timescales and has not yet been well evaluated. Here, based on a reconstructed observation-based product of surface ocean pCO and air-sea CO flux (the MPI-SOMFFN method), we investigated seasonal to decadal spatiotemporal variations of the ocean CO sink during the past three decades using an adaptive data analysis method.
View Article and Find Full Text PDFA numerical model was applied to simulate the transport of Cs released with the waters which were used to cool Fukushima reactors. These stored waters will be released to the Pacific Ocean according to Japanese government plans. The radionuclide transport model is Lagrangian and includes radionuclide interactions with sediments and an integrated dynamic foodweb model for biota uptake.
View Article and Find Full Text PDFJapan recently announced plans to discharge over 1.2 million tons of radioactive water from the Fukushima Daiichi Nuclear Power Plant (FDNPP) into the Pacific Ocean. The contaminated water can poses a threat to marine ecosystems and human health.
View Article and Find Full Text PDFAs a cooling machine of the Arctic Ocean, the Barents Sea releases most of the incoming ocean heat originating from the North Atlantic. The related air-sea heat exchange plays a crucial role in both regulating the climate and determining the deep circulation in the Arctic Ocean and beyond. It was reported that the cooling efficiency of this cooling machine has decreased significantly.
View Article and Find Full Text PDFSolar irradiation is the primary driving force for the Earth's climate system. However, we are still short of powerful tools to study the variability of the Earth's climate due to the solar activity. Here we apply the Liang-Kleeman information flow to quantify the causality from Total Solar Irradiance (TSI) to the global ocean heat content anomaly (OHCA).
View Article and Find Full Text PDFOcean surface waves are essential to navigation safety, coastal activities, and climate systems. Numerical simulations are still the primary methods used in wave climate research, especially in future climate change scenarios. Recently, First Institute of Oceanography-Earth System Model version 2.
View Article and Find Full Text PDFIn this paper, the zonal and meridional sea surface height (SSH) wavenumber spectra are systematically calculated using along-track and gridded altimeter products, and the slopes of the SSH wavenumber spectra over the mesoscale band, which is defined by the characteristic length scale of mesoscale signals, are estimated. The results show that the homogeneous spectral slopes calculated from the along-track and gridded altimeter datasets have a similar spatial pattern, but the spectral slopes from gridded altimeter data are generally steeper than that from the along-track data with an averaged difference of 1.5.
View Article and Find Full Text PDFData presented are related to the research article entitled "Using Holo-Hilbert spectral analysis to quantify the modulation of Dansgaard-Oeschger events by obliquity" (J. Deng et al., 2018).
View Article and Find Full Text PDFOil spills are major threats to marine ecosystems. Here, we establish a three-dimensional oil spill model to simulate and project the short- and long-term trajectories of oil slicks and oil-contaminated water that leaked from the Sanchi wreckage. The pollution probability in surrounding areas for the period up to 180 days after the Sanchi sank is statistically analysed.
View Article and Find Full Text PDFSci Total Environ
January 2018
Analyses of the chlorophyll a concentration (chla) from satellite ocean color products have suggested the decadal-scale variability of chla linked to the climate change. The decadal-scale variability in chla is both spatially and temporally non-uniform. We need to understand the spatiotemporal evolution of chla in decadal or multi-decadal timescales to better evaluate its linkage to climate variability.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
April 2016
Heated from above, the oceans are stably stratified. Therefore, the performance of general ocean circulation models and climate studies through coupled atmosphere-ocean models depends critically on vertical mixing of energy and momentum in the water column. Many of the traditional general circulation models are based on total kinetic energy (TKE), in which the roles of waves are averaged out.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
April 2016
In this big data era, it is more urgent than ever to solve two major issues: (i) fast data transmission methods that can facilitate access to data from non-local sources and (ii) fast and efficient data analysis methods that can reveal the key information from the available data for particular purposes. Although approaches in different fields to address these two questions may differ significantly, the common part must involve data compression techniques and a fast algorithm. This paper introduces the recently developed adaptive and spatio-temporally local analysis method, namely the fast multidimensional ensemble empirical mode decomposition (MEEMD), for the analysis of a large spatio-temporal dataset.
View Article and Find Full Text PDFA massive bloom of macroalgae occurred in the western Yellow Sea at the end of May, 2008, and lasted for nearly 2 months. The surface-drifting macroalgae was observed to accumulate in a pattern dominated by linear bands. The maximum length of individual algal bands exceeded 10 km and the distance between neighboring bands ranged from hundreds of meters to 6 km.
View Article and Find Full Text PDF