Publications by authors named "Fangke Shen"

Deficiencies of selenium (Se), a necessary microelement for humans, can be remedied by appropriately supplying Se-enriched rice. However, overconsumption of Se-enriched rice poses a potential risk. To accurately assess Se human health risks associated with Se-enriched rice consumption, we developed a rat in vivo model to systematically explore the relative bioavailability of Se (Se-RBA) from Se-enriched rice from a wide geographic range.

View Article and Find Full Text PDF

Arsenic and cadmium pose a potential health risk to human beings via rice grain consumption. In the current study, a pot experiment was conducted to evaluate the effect of Br (5 mM and 20 mM) and Se (1 mM) at rice tillering and filling stages on Cd and As accumulation in rice grain and their health risk indices. The results showed that Br or Se applications at different stages of rice improved the photosynthesis, reduce MDA content in flag leaves by 17.

View Article and Find Full Text PDF

The correlation of and assays for determining bioavailable Cd amounts in vegetables is limited. Herein, the correlations between Cd relative bioavailability (Cd-RBA) in rat models and Cd bioaccessibility in four assays were examined in vegetables. Results showed that the combined liver plus kidney data provided the appropriate endpoint and was used as a biomarker to estimate Cd-RBA.

View Article and Find Full Text PDF

Selenium (Se) deficiency is a public health concern that is mainly caused by inadequate intake of Se from staple crops. The purpose of this study is to investigate the effects of inoculation with different arbuscular mycorrhizal fungus (AMF) strains, including Funneliformis mosseae (Fm) and Glomus versiforme (Gv), and fertilization with selenite or selenate on the accumulation and speciation of Se in rice. The results showed that using both AMF inoculation and Se fertilization could promote organic Se accumulation in rice grain than using only Se fertilization.

View Article and Find Full Text PDF

Selenium (Se) is an essential micronutrient for humans but is toxic when consumed in excess through the food chain, such as vegetables. Therefore, it is imperative to understand the relationship between the bioavailability of Se in soil and its uptake in edible parts of vegetables. This study investigated Se bioavailability of in six representative Chinese soils treated with different concentrations of exogenous selenate fertilizer (0-2 mg·kg) by comparing diffusive gradients in thin-films (DGT) and chemical extraction methods.

View Article and Find Full Text PDF

Paddy soil samples were collected in layers (0-5, 5-12, and 12-20 cm) during rice growth period to investigate the characteristics of the N forms and N-transforming bacteria in the soil profile under different tillage patterns (no-tillage with straw returning, NTS; conventional tillage with straw returning, CTS; no-tillage, NT; and conventional tillage, CT). In the whole rice growth period, ammonifying bacteria in 0-5 cm soil layer had the highest number under NTS, and nitrosobacteria in 0-5 cm and 5-12 cm soil layers were more abundant but in 12-20 cm soil layer were lesser under CT than under NT. Nitrosobacteria and denitrobacteria in 0-20 cm soil layer were lesser under NTS than under CTS.

View Article and Find Full Text PDF