Publications by authors named "Fanghao Shi"

The highly effective phosphate-solubilizing microorganisms are significant for making full use of the potential phosphorus resources in the soil and alleviating the shortage of phosphorus resources. In this study, a phosphate-solubilizing fungus was isolated from wheat and cotton rhizosphere soils in the lower reaches of the Yellow River in China and was identified as by morphological and ITS sequencing analysis. In order to obtain a fungus with more efficient phosphorus solubilization ability, we tested three positive mutant strains (P1, P2, and P3) and three negative mutant strains (N1, N2, and N3) through low-energy nitrogen ion implantation mutagenesis.

View Article and Find Full Text PDF

The monitoring of circulating tumor cells (CTCs) has recently served as a promising approach for assessing prognosis and evaluating cancer treatment. We have already developed a CTCs enrichment platform by EpCAM recognition peptide-functionalized magnetic nanoparticles (EP@MNPs). However, considering heterogeneous CTCs generated through epithelial-mesenchymal transition (EMT), mesenchymal CTCs would be missed with this method.

View Article and Find Full Text PDF

Single-cell RNA sequencing on circulating tumor cells (CTCs) proves useful to study mechanisms of tumor heterogeneity, metastasis, and drug resistance. Currently, single-cell RNA sequencing of CTCs usually takes three prerequisite steps: enrichment of CTCs from whole blood, characterization of captured cells by immunostaining and microscopic imaging, and single-cell isolation through micromanipulation. However, multiple pipetting and transferring steps can easily cause the loss of rare CTCs.

View Article and Find Full Text PDF

Whole-genome sequencing on circulating tumor cells (CTCs) at the single cell level has recently been found helpful for precision medicine, as the oncogenic profiles of single CTCs are useful for discovering oncogenic mutation heterogeneities and guiding/adjusting cancer treatment. To overcome the limits of existing methods of single CTC sequencing, in which CTC enrichment, identification and gene amplification are performed by discrete modules, this study presents a novel method in which all processing steps from blood sample collection to preparation of gene amplification products for sequencers are finished in a single microfluidic chip. This microfluidic chip comprehensively performs blood filtering, CTC enrichment, CTC identification/isolation, CTC lysis and whole genome amplification (WGA) at the single cell level.

View Article and Find Full Text PDF

The T-plastin (PLS3) has a significant implication in epithelial-mesenchymal transition (EMT) and breast cancer prognosis. Using one-bead-one-compound library strategy, a novel peptide TP1 (KVKSDRVC) toward PLS3 was screened and exhibited the specificity for identifying PLS3-expressed cancer cells. Moreover, we found Fluorescein isothiocyanate-labeled TP1 (FITC-TP1) could act as a novel probe for EMT-induced cancer cells, preferentially in the leading edge.

View Article and Find Full Text PDF

Plastin 3 (PLS3) overexpression may serve as a marker for predicting chemotherapeutic outcomes in drug-resistant cancer cells, but the mechanism is unclear. Herein, we show that the down-regulation of PLS3 by PLS3 gene silencing augments the sensitivity of MDA-MB-231 triple-negative breast cancer cells to paclitaxel. Interestingly, a low concentration of paclitaxel was able to induce strong apoptosis in the PLS3-silenced cells.

View Article and Find Full Text PDF