Publications by authors named "Fangfei Ge"

Increasing evidence suggests that cortical folding patterns of human cerebral cortex manifest overt structural and functional differences. However, for interpretability, few studies leverage advanced techniques (e.g.

View Article and Find Full Text PDF

Exploring the spatial patterns and temporal dynamics of human brain activity has been of great interest, in the quest to better understand connectome-scale brain networks. Though modeling spatial and temporal patterns of functional brain networks have been researched for a long time, the development of a unified and simultaneous spatial-temporal model has yet to be realized. For instance, although some deep learning methods have been proposed recently in order to model functional brain networks, most of them can only represent either spatial or temporal perspective of functional Magnetic Resonance Imaging (fMRI) data and rarely model both domains simultaneously.

View Article and Find Full Text PDF
Article Synopsis
  • Deep neural networks outperform traditional methods in analyzing fMRI data, but designing these networks manually is time-consuming and inefficient due to the complexity of fMRI images.
  • To address this, researchers proposed a novel framework called NAS-DBN, which uses Particle Swarm Optimization to automatically search for optimal neural architectures suited for volumetric fMRI data.
  • Experiments demonstrated that NAS-DBN not only achieved a 47.9% improvement in performance compared to manually designed networks but also effectively identified 260 functional brain networks while maintaining strong overlaps with established analysis models.
View Article and Find Full Text PDF

Hierarchical organization of brain function has been an established concept in the neuroscience field for a long time, however, it has been rarely demonstrated how such hierarchical macroscale functional networks are actually organized in the human brain. In this study, to answer this question, we propose a novel methodology to provide an evidence of hierarchical organization of functional brain networks. This article introduces the hybrid spatiotemporal deep learning (HSDL), by jointly using deep belief networks (DBNs) and deep least absolute shrinkage and selection operator (LASSO) to reveal the temporal hierarchical features and spatial hierarchical maps of brain networks based on the Human Connectome Project 900 functional magnetic resonance imaging (fMRI) data sets.

View Article and Find Full Text PDF

Mapping the relation between cortical convolution and structural/functional brain architectures could provide deep insights into the mechanisms of brain development, evolution and diseases. In our previous studies, we found a unique gyral folding pattern, termed a 3-hinge, which was defined as the conjunction of three gyral crests. The uniqueness of the 3-hinge was evidenced by its thicker cortex and stronger fiber connections than other gyral regions.

View Article and Find Full Text PDF

It has been recently shown that deep learning models such as convolutional neural networks (CNN), deep belief networks (DBN) and recurrent neural networks (RNN), exhibited remarkable ability in modeling and representing fMRI data for the understanding of functional activities and networks because of their superior data representation capability and wide availability of effective deep learning tools. For example, spatial and/or temporal patterns of functional brain activities embedded in fMRI data can be effectively characterized and modeled by a variety of CNN/DBN/RNN deep learning models as shown in recent studies. However, it has been rarely investigated whether it is possible to directly infer hierarchical brain networks from volumetric fMRI data using deep learning models such as DBN.

View Article and Find Full Text PDF

The human cerebral cortex is highly folded into diverse gyri and sulci. Accumulating evidences suggest that gyri and sulci exhibit anatomical, morphological, and connectional differences. Inspired by these evidences, we performed a series of experiments to explore the frequency-specific differences between gyral and sulcal neural activities from resting-state and task-based functional magnetic resonance imaging (fMRI) data.

View Article and Find Full Text PDF

Comparison and integration of neuroimaging data from different brains and populations are fundamental in neuroscience. Over the past decades, the neuroimaging field has largely depended on image registration to compare and integrate neuroimaging data from individuals in a common reference space, with a basic assumption that the brains are similar. However, the intrinsic neuroanatomical complexity and huge interindividual cortical folding variation remain underexplored.

View Article and Find Full Text PDF

fMRI data decomposition techniques have advanced significantly from shallow models such as Independent Component Analysis (ICA) and Sparse Coding and Dictionary Learning (SCDL) to deep learning models such Deep Belief Networks (DBN) and Convolutional Autoencoder (DCAE). However, interpretations of those decomposed networks are still open questions due to the lack of functional brain atlases, no correspondence across decomposed or reconstructed networks across different subjects, and significant individual variabilities. Recent studies showed that deep learning, especially deep convolutional neural networks (CNN), has extraordinary ability of accommodating spatial object patterns, e.

View Article and Find Full Text PDF

Recent studies have shown that quantitative description of gyral shape patterns offers a novel window to examine the relationship between brain structure and function. Along this research line, this paper examines a unique and interesting type of cortical gyral region where 3 different gyral crests meet, termed 3-hinge gyral region. We extracted 3-hinge gyral regions in macaque/chimpanzee/human brains, quantified and compared the relevant DTI-derived fiber densities in 3-hinge and 2-hinge gyral regions.

View Article and Find Full Text PDF

One distinct feature of the cerebral cortex is its convex (gyri) and concave (sulci) folding patterns. Due to the remarkable complexity and variability of gyral/sulcal shapes, it has been challenging to quantitatively model their organization patterns. Inspired by the observation that the lines of gyral crests can form a connected graph on each brain hemisphere, we propose a new representation of cortical gyri/sulci organization pattern - gyral net, which models cortical architecture from a graph perspective, starting with nodes and edges obtained from the reconstructed cortical surfaces.

View Article and Find Full Text PDF