Silk fibroin (SF), a natural polymer material possessing excellent biocompatibility and biodegradability, and has been widely used in biomedical applications. In order to explore the behavior of vascular cells by co-culturing on regenerated SF matrix for use as artificial blood vessels, human aorta vascular smooth muscle cells (HAVSMCs) were co-cultured with human arterial fibroblasts (HAFs) or human umbilical vein endothelial cells (HUVECs) on SF films and SF tubular scaffolds (SFTSs). Analysis of cell morphology and deoxyribonucleic acid (DNA) content showed that HUVECs, HAVSMCs and HAFs adhered and spread well, and exhibited high proliferative activity whether cultured alone or in co-culture.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2017
Thrombus formation remains a particular challenge for small-diameter vascular grafts. In this study, the direct thrombin inhibitor hirudin (Hir) was used to modify silk fibroin films in an attempt to enhance its antithrombogenic properties. Hir was successfully attached to silk fibroin and uniformly distributed in the regenerative material.
View Article and Find Full Text PDFThe working of nonaqueous Li-O batteries relies on the reversible formation/decomposition of LiO which is electrically insulating and reactive with carbon and electrolyte. Realizing controlled growth of LiO is a prerequisite for high performance of Li-O batteries. In this work, a sandwich-structured catalytic cathode is designed: graphene/Au-nanoparticles/Au-nanosheets (G/Au-NP/Au-NS) that enables controlled growth of LiO spatially and structurally.
View Article and Find Full Text PDFA Li-O2 battery works based on the reversible formation and decomposition of Li2O2, which is insulating and highly reactive. Designing a catalytic cathode capable of controlling Li2O2 growth recently became a challenge to overcome this barrier. In this work, we present a new design of catalytic cathode by growing porous Au/δ-MnO2 electrocatalyst directly on a conductive substrate.
View Article and Find Full Text PDFHydrogen storage performances of a Li(2)NH-xMgNH combination system (x = 0, 0.5, 1 and 2) are investigated for the first time. It is found that the hydrogenated samples with MgNH exhibit a significant reduction in the dehydrogenation temperatures.
View Article and Find Full Text PDF