Publications by authors named "Fangding Huang"

Nonaqueous Li-O battery (LOB) represents one of the promising next-gen energy storage solutions owing to its ultrahigh energy density but suffers from problems such as high charging overpotential, slow redox kinetics, Li anode corrosion, etc., calling for a systemic optimization of the battery configuration and structural components. Herein, an ingenious "trinity" design of LOB is initiated by implementing a hollowed cobalt metal organic framework (MOF) impregnating iodized polypyrrole simultaneously as the cathode catalyst, anode protection layer, and slow-release capsule of redox mediators, so as to systemically address issues of impeded mass transport and redox kinetics on the cathode, dendrite growth, and surface corrosion on the anode, as well as limited intermediate solubility in the low donor-number (DN) solvent.

View Article and Find Full Text PDF

As the promising next-generation energy storage solution, lithium metal battery (LMB) has gained great attention but still suffers from troubles associated with the highly active metallic lithium. Herein, it is aimed to develop an anode-free LMB engaging no Li disk or foil by modifying the Cu current collector with mercapto metal-organic frameworks (MOFs) impregnating Ag nanoparticles (NPs). While the polar mercapto groups facilitate and guide Li transport, the highly lithiophilic Ag NPs help to enhance the electric conductivity and lower the energy barrier of Li nucleation.

View Article and Find Full Text PDF